## РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

### АВТОМЕТРИЯ

2002, том 38, № 5

### ФИЗИКО-ТЕХНИЧЕСКИЕ ОСНОВЫ МИКРО- И ОПТОЭЛЕКТРОНИКИ

УДК 621.315.592

#### А. А. Корнилович

(Новосибирск)

## БЕСКОНТАКТНОЕ ОПРЕДЕЛЕНИЕ ПОДВИЖНОСТИ И ВРЕМЕНИ РЕЛАКСАЦИИ ИМПУЛЬСА НОСИТЕЛЕЙ ЗАРЯДА В ПЛЕНОЧНЫХ ПОЛУПРОВОДНИКОВЫХ СТРУКТУРАХ<sup>\*</sup>

Исследовано отражение СВЧ-мощности от двумерных и тонкопленочных полупроводниковых структур в области циклотронного резонанса. Определены подвижность и время релаксации импульса электронов в гетероструктурах GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As и тонких пленках  $Cd_xHg_{1-x}Tec$  погрешностью ~1% по измеренным значениям магнитного поля, соответствующим максимумам первой и второй производных коэффициента отражения.

Введение. Известные методы определения подвижности носителей заряда в двумерных (2*D*) системах и тонких пленках применимы для случаев полного [1] и частичного [2] заполнения образцом сечения волновода и основаны на определении проводимости  $\sigma(\omega, B)$  образцов по измерениям коэффициента отражения  $R(\omega, B)$ .

Нами разработаны оптический [3] и СВЧ [4] способы и созданы устройства [5, 6] для определения транспортных параметров объемных 3D и 2D полупроводниковых структур. Устройства позволяют измерять производные коэффициентов отражения  $\partial R/\partial B$  и  $\partial^2 R/\partial B^2$  в зависимости от величины постоянного магнитного поля и определять концентрацию и подвижность носителей заряда в 3D- и 2D-полупроводниках при гелиевых и азотных температурах.

В данной работе подвижность  $\mu$  и время релаксации т носителей заряда определены по измеренным значениям магнитного поля  $B_1$  и  $B_2$ , соответствующим максимумам первой и второй производных коэффициентов отражения СВЧ-волны частотой  $\omega$  в области циклотронного резонанса при  $\mu B >$ > $\omega \tau > 1$ .

<sup>\*</sup> Работа выполнена при частичной финансовой поддержке Правления ISSEP (гранты № 1057d, № d98-978, № d99-156).

Теория метода определения подвижности и времени релаксации импульса носителей заряда. Коэффициент отражения СВЧ-волны определяется известным выражением [7]:

$$R = \sqrt{\frac{\left(1 - \overline{\sigma}\right)^2 + A^2}{\left(1 + \overline{\sigma}\right)^2 + A^2}},\tag{1}$$

где  $\overline{\sigma} = \sigma_s Z_g$  – нормированная проводимость активного слоя полупроводника;  $\sigma_s = \sigma_0 \delta = n_s e\mu$ ;  $n_s$  – концентрация носителей заряда в 2*D*-слое единичной площади;  $\delta$  – толщина 2*D*-слоя;  $Z_g$  – характеристическое сопротивление волновода; *A* – нормированная реактивная проводимость СВЧ-цепи. При настройке СВЧ-цепи на минимум сигнала в нулевом магнитном поле *A* = 0. Тогда коэффициент отражения

$$R = \frac{1 - \overline{\sigma}}{1 + \overline{\sigma}}.$$
 (2)

Рассмотрим взаимодействие СВЧ-волны типа  $H_{10}$  с образцом, помещенным в центральную часть волновода и в постоянное магнитное поле, направленное вдоль оси волновода. Образец повернут активным слоем к фронту падающей волны. Линейно поляризованную волну в случае геометрии Фарадея можно рассматривать как суперпозицию двух волн круговой поляризации [8]. При этом высокочастотная проводимость, возбужденная СВЧ-волной в образце, без учета распределения носителей по энергиям может быть представлена приближенным выражением

$$\sigma(\omega, B) = \frac{\sigma_{+} + \sigma_{-}}{2} = \frac{n_{s}e\mu}{2} \left[ \frac{1}{(\mu B + \omega \tau)^{2} + 1} + \frac{1}{(\mu B - \omega \tau)^{2} + 1} \right],$$
 (3)

где  $\sigma_+$  и  $\sigma_-$  компоненты эффективной проводимости, возбуждаемые волнами правой и левой круговой поляризации соответственно. При  $\mu B > \omega \tau \ge 1$ в области циклотронного резонанса  $\sigma_- \gg \sigma_+$  и поглощение СВЧ-мощности в основном обусловлено проводимостью  $\sigma_-$ . Увеличение проводимости  $\sigma_-$ , обусловленное возрастанием поглощенной носителями СВЧ-мощности, вызывает уменьшение коэффициента отражения *R*. Изменение *R* можно представить линейной зависимостью от  $\sigma_-$ :

$$\Delta R(\omega, B) = \left(\frac{\partial R}{\partial \sigma}\right)_{B=0} \Delta \sigma(\omega, B).$$
(4)

Производные  $\partial R/\partial \sigma$  и  $\partial R/\partial B$  имеют противоположные знаки. Производные  $\partial R/\partial B$  и  $\partial \sigma/\partial B$  в области циклотронного резонанса достигают экстремальных значений при

$$\mu B_1 - \omega \tau = 1/\sqrt{3}. \tag{5}$$

Вторые производные  $\partial^2 R / \partial B^2$  и  $\partial^2 \sigma / \partial B^2$  максимальны при

$$\mu B_2 - \omega \tau = 1. \tag{6}$$

Производная  $\partial R/\partial B = 0$  при циклотронном резонансе

$$\mu B_0 = \omega_c \tau = \omega \tau, \qquad (7)$$

где  $\omega_c = eB_0/m^*$  – циклотронная частота,  $m^*$  – эффективная масса носителей заряда.

· · · · · · ·

Подвижность и время релаксации импульса носителей определяются выражениями

$$\mu = 1/\sqrt{3}(B_1 - B_0), \qquad (8)$$

$$\tau = 1 \bigg/ \omega \sqrt{3} \bigg( \frac{B_1}{B_0} - 1 \bigg). \tag{9}$$

При известной эффективной массе носителей

$$\mu = 1 \bigg/ \sqrt{3} \bigg( B_1 - \frac{m^*}{e} \omega \bigg), \tag{10}$$

$$\tau = 1 \bigg/ \sqrt{3} \bigg( \frac{eB_1}{m^*} - \omega \bigg). \tag{11}$$

Из (6) и (7) следует, что

$$\mu = (B_2 - B_0)^{-1} = \left(B_2 - \frac{m^*}{e}\omega\right)^{-1}.$$
 (12)

Из (8) и (12) получим

$$\mu = \frac{e}{m^*} \tau = \left(1 - \frac{1}{\sqrt{3}}\right) (B_2 - B_1)^{-1}.$$
 (13)

В области магнитоплазменного резонанса [9]  $\sigma(\omega, B)$  можно представить в приближенном виде, произведя в (3) замену  $\omega \tau$  на  $\alpha$ :

$$\alpha = \omega \tau \left( \frac{\omega_p^2}{\omega^2} - 1 \right). \tag{14}$$

Из условия магнитоплазменного резонанса ( $\alpha = \omega_c \tau = \mu B_0$ ) определяется плазменная частота

$$\omega_p = \omega \sqrt{\frac{eB_0}{m^*\omega} + 1}.$$
 (15)

При  $\mu B > \alpha \ge 1$  подвижность  $\mu$  и время релаксации  $\tau$  определяются из соотношения

$$\mu = \frac{e}{m^*} \tau = \frac{1}{\sqrt{3}} \left[ B_1 - \frac{m^*}{e} \omega \left( \frac{\omega_p^2}{\omega^2} - 1 \right) \right].$$
(16)

Следует отметить, что из (15) и (16) получаем выражение (8).

Мстодика эксперимента, результаты и их обсуждение. Разработанная нами экспериментальная СВЧ-установка для измерения производных коэффициента отражения СВЧ-волны при исследовании 2D полупроводниковых систем типа GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As при гелиевых температурах описана в [4, 5]. В работе [6] приведено описание установки для измерения производных коэффициента отражения при азотных температурах.

В разработанных устройствах [5, 6] применяется усовершенствованная методика двойного дифференцирования по магнитному полю с селективным усилением, синхронным детектированием и автоматической регистрацией самописцем измеряемого сигнала [10]. Амплитуда сигнала второй гармоники пропорциональна квадрату амплитуды модуляции. Это позволило при малых амплитудах модуляции магнитного поля значительно повысить чувствительность метода регистрации сигнала по второй гармонике. Магнитное поле *В* измерялось датчиком Холла, откалиброванным по датчику ядерного магнитного резонанса. Погрешность определения *B* составляла менее 0,1%. Эксперимент проводился на частоте падающей на образец СВЧ-волны v = 36,4 ГГц. Толщина исследуемого образца была много меньше глубины скин-слоя.

Для оценки допустимости принятых в работе приближений на рис. 1 приведены магнитополевые зависимости высокочастотной проводимости и ее производных, рассчитанные в относительных единицах по следующим формулам:

$$\frac{\sigma_{\pm}}{\sigma_0} = \left[1 + \omega^2 \tau^2 \left(\frac{B}{B_0} \pm 1\right)^2\right]^{-1},$$
(17)

$$\frac{d\sigma_{\pm}}{dB} \frac{B_0}{\sigma_0} = -\frac{\omega \tau \left(\frac{B}{B_0} \pm 1\right)}{\left[1 + \omega^2 \tau^2 \left(\frac{B}{B_0} \pm 1\right)^2\right]^2},$$
(18)

$$\frac{d^{2}\sigma_{\pm}}{dB^{2}} \frac{B_{0}^{2}}{\sigma_{0}} = \frac{\omega\tau \left[3\omega^{2}\tau^{2} \left(\frac{B}{B_{0}} \pm 1\right)^{2} - 1\right]}{\left[1 + \omega^{2}\tau^{2} \left(\frac{B}{B_{0}} \pm 1\right)^{2}\right]^{3}}.$$
(19)

Рис. 1. Высокочастотная проводимость и ее производные в зависимости от магнитного поля, рассчи-

Из анализа кривых рис. 1 следует, что при  $\omega \tau = 1$  выполняется приближение  $\sigma_- \gg \sigma_+$ . Учет производных от  $\sigma_+$ уменьшает значения магнитного поля  $B_1$ и  $B_2$  на 1% и практически не изменяет их разность  $B_2 - B_1$ . Подвижность электронов, определенная по формулам (8) и (13), составляет  $\mu = 11 \text{ м}^2 / \text{B} \cdot \text{с}$ . На рис. 2 представлены экспериментальные зависимости производных коэффициента отражения  $\partial R / \partial B$  и  $\partial^2 R / \partial B^2$  от магнитного поля, полученные в [6] для 2D-слоя GaAs гетероструктуры GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As с концентрацией электронов  $n_s = 2,5 \times \times 10^{11}$  см<sup>-2</sup> при T = 80 К и  $\nu = 36,4$  IT ц.



Из анализа кривых рис. 2 получены значения магнитного поля  $B_0 = 0,091$ ,  $B_1 = 0,21$  и  $B_2 = 0,30$  Тл. Подвижности электронов, определенные по (8) и (13), составляют  $\mu_1 = 4,8$  и  $\mu_2 = 4,7$  м<sup>2</sup>/В · с соответственно. Эти результаты согласуются с паспортным значением  $\mu_n = 4,8$  м<sup>2</sup>/В · с для структуры, из

которой был изготовлен образец. Время релаксации импульса электронов, определенное по формулам (9) и (13), составило  $\tau = 1,9 \cdot 10^{-12}$  с. На основе полученных результатов ют составляет 0,437. Значения магнитного поля  $B_1$  и  $B_2$ , полученные по формулам (18) и (19) без учета производных от  $\sigma_+$ , составили  $B_1 = 0,211$  и  $B_2 = 0,299$  Тл. Учет влияния производных от  $\sigma_+$  приводит к уменьшению  $B_1$  и  $B_2$  на 10%. При этом разность  $B_2 - B_1$  уменьшается лишь на 1%. Подвижность электронов, вычисленная по формуле (13) без уче-





та влияния  $\sigma_+$ , составила  $\mu = 4.8 \text{ m}^2/\text{B} \cdot \text{c}$ , а с учетом производных от  $\sigma_+$  подвижность  $\mu = 4,85 \text{ м}^2 / \text{B} \cdot \text{c}.$ 

Для определения µ и τ рассмотренным методом не требуется измерять абсолютные значения коэффициента отражения и размеры исследуемого слоя образца. Этим методом можно определять µ и т как в двумерных системах, так и в объемных полупроводниках и тонких эпитаксиальных пленках. Приведем пример применения этого метода для определения µ и т в эпитаксиальных пленках, используя экспериментальные результаты [11, 12].

В работе [11] исследовалась зависимость коэффициента отражения от магнитного поля для эпитаксиальных пленок  $Cd_{x}Hg_{1-x}Te$  при T = 77 К и v == 36,4 ГГц. Для объемного образца получено  $\bar{B}_1 = 0,13$  Тл. Принимая значение эффективной массы электронов  $m^* = 0,06m_0$ , приведенное в [12], получаем  $B_0 = 0,078$  Тл. Подвижность электронов, определенная по формуле (10) для объемного образца, составляет  $\mu_0 = 11 \text{ м}^2/\text{B} \cdot \text{c}$ . Для эпитаксиальной пленки при  $\bar{B}_1 = 0,17$  и  $B_0 = 0,078$  Тл подвижность, вычисленная по формуле (10),  $\mu_{n\pi} = 6,3 \text{ м}^2/\text{B} \cdot \text{c}$ . Время релаксации импульса электронов для объемного образца  $\tau_0 = 3.8 \cdot 10^{-12}$  с и для эпитаксиальной пленки  $\tau_{\pi\pi} = 2.0 \cdot 10^{-12}$  с.

Авторами [9] получена экспериментальная зависимость коэффициент прохождения СВЧ-волны (v = 8ГГц) от магнитного поля для гетероструктур  $GaAs/Al_xGa_{1-x}As$  в области магнитоплазменного резонанса при T = 77 К. Из анализа кривой для образца GA17123 получаем  $B_1 = 0,14$  и  $B_0 = 0,09$  Tл. Подвижность электронов в 2D-слое GaAs образца GA17123, вычисленная п формулам (8) и (16), составляет  $\mu = 12 \text{ м}^2/\text{B} \cdot \text{с}$ . Время релаксации импульс электрона составило  $\tau = 4,5 \cdot 10^{-12}$  с.

Полученное значение подвижности µ согласуется как с вычислениями, выполненными авторами [9] по измерениям коэффициента пропускани СВЧ-волны ( $\mu_{[9]} = 11,5 \text{ м}^2 / \text{B} \cdot \text{c}$ ), так и с паспортными данными  $\mu_{\pi} =$ 

# $=13,8 \text{ m}^2/\text{B}\cdot\text{c}.$

C увеличением  $\omega \tau$  уменьшается влияние учета производных от  $\sigma_+$  на положения максимумов производных коэффициента отражения, резонансны кривые имеют лоренцевский вид [13], и возрастает точность определения измеряемых параметров. Увеличение ω требует применения сильного магнитного поля, в котором могут проявляться квантовые эффекты [5]. Уменьшая температуру от 77 до 4 К, можно увеличить μ и ωτ более чем в 2 раза [14] и проводить измерения в слабом магнитном поле. Расчетные значения магнитного поля гетероструктуры GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As для максимумов производны коэффициента отражения при  $\omega \tau = 2$  и T = 4 К уменьшаются и составляют  $B_1 = 0,117$  и  $B_2 = 0,136$  Тл. При этом учет влияния производных от  $\sigma$  не вызывает изменения  $B_1$  и  $B_2$ , а погрешность определения  $\mu$  и  $\tau$  не превышает 1 %.

Заключение. Разработанная методика определения подвижности и времени релаксации импульса носителей заряда применима для полупроводников одного типа проводимости с изотропной эффективной массой в област циклотронного и магнитоплазменного резонансов в случаях, когда резонансная кривая имеет лоренцевский вид [13]. Для двумерных полупроводниковых слоев применение этой методики эффективно в случае заполнения одной нулевой размерно-квантованной зоны носителями одного знака. Дл определения подвижности и времени релаксации импульса носителей нет

необходимости измерять абсолютные значения коэффициента отражения. Достаточно измерить величины магнитного поля, соответствующие максимумам производных коэффициента отражения.

Для определения подвижности и времени релаксации импульса носителей заряда не требуется точной подгонки образца к волноводам и полного перекрытия образцом сечения волновода. Рассмотренный в работе бесконтактный метод может быть применен для неразрушающего экспресс-контроля транспортных параметров полупроводниковых структур на начальных этапах изготовления полупроводниковых приборов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Breslau N. Contactless measurement of sheet carrier concentration and mobility of thin layers on semi-insulating GaAs // Inst. Phys. Conf. 1984. 74. P. 269.
- Creiner P., Polignone L., Becker C. R., Geick R. Contactless measurement of the conductivity of II-VI epitaxial layers by means of the partially filled waveguide method // Appl. Phys. 1992. A55. P. 279.
- 3. А. с. 1694018 СССР. Способ определения концентрации носителей заряда в вырожденных полупроводниках /А. А. Корнилович, С. А. Студеникин, Е. И. Уваров. Опубл. 22.07.91, Бюл. № 43.
- 4. Пат. 2037911 Р.Ф. Способ бесконтактного определения концентрации свободных носителей заряда в вырожденных полупроводниках /А. А. Корнилович, С. А. Студеникин, А. Ф. Булдыгин. Опубл. 19.06.95, Бюл. № 17.
- 5. Корнилович А. А., Студеникин С. А., Булдыгин А. Ф. СВЧ-установка для бесконтактного определения концентрации носителей заряда в полупроводниковых структурах по эффекту Шубникова де Гааза // ПТЭ. 1996. № 2. С. 131.
- Kornilovich A. A., Studenikin S. A., Baturina T. I., Buldigyn A. F. Microwave methods for contactless determination of transport parameters of semiconductor structures // Proc. APEIE-1996. Novosibirsk, 1996. 1. P. 43.
- 7. Теория линий передачи сверхвысоких частот: Пер. с англ. М.: Сов. радио, 1951. Т. 1.
- 8. Зеегер К. Физика полупроводников: Пер. с англ. /Под ред. Ю. К. Пожелы. М.: Мир, 1977.
- Бородовский П. А., Булдыгин А. Ф. Определение подвижности и концентрации электронов в тонких полупроводниковых пленках на сверхвысоких частотах с помощью плазменного резонанса // ФТП. 1999. 33, вып.10. С.1224.
- 10. Вдовин А. В., Корнилович А. А., Скок Э. М., Уваров Е. И. Бесконтактные методы исследования нелинейного спинового резонанса и эффекта Шубникова – де Гааза в объемных полупроводниках и низкоразмерных системах // Автометрия, 2001. № 4. С. 62.
- 11. Бородовский П. А., Булдыгин А. Ф., Студеникин С. А. СВЧ-методы измерения параметров эпитаксиальных пленок КРТ // Автометрия. 1996. № 4. С. 59.
- 12. Андо Т., Фаулер А., Стерн Ф. Электронные свойства двумерных систем: Пер. с англ. /Под ред. Ю. В. Шмарцева. М.: Мир, 1985.
- 13. Крауфорд Ф. Волны: Пер. с англ. /Под ред. А. И. Шальникова, А. О. Вайсенберга. М.: Наука, 1974.
- Störmer H. L., Gossard A. C., Wiegmann W., Boldwin K. Dependence of electron mobility in modulation-doped GaAs/AlGaAs heterojunction interfaces on electron density and Al concentration // Appl. Phys. Lett. 1981. 39. P. 912.

Новосибирский государственный технический университет, E-mail: physics@ref.nstu.ru

Поступила в редакцию 4 июня 2002 г.