СИСТЕМЫ АВТОМАТИЗАЦИИ В НАУЧНЫХ ИССЛЕДОВАНИЯХ И ПРОМЫШЛЕННОСТИ

УДК 62-40

СТРУКТУРНО-ПАРАМЕТРИЧЕСКИЙ СИНТЕЗ ОПТИМАЛЬНЫХ ПО БЫСТРОДЕЙСТВИЮ СИСТЕМ УПРАВЛЕНИЯ С РАСПРЕДЕЛЁННЫМИ ПАРАМЕТРАМИ В УСЛОВИЯХ ИНТЕРВАЛЬНОЙ НЕОПРЕДЕЛЁННОСТИ ХАРАКТЕРИСТИК ОБЪЕКТА*

Э. Я. Рапопорт, И. С. Левин

Самарский государственный технический университет, 443100, г. Самара, ул. Молодогвардейская, 244 E-mail: rapoport@samgtu.ru

Рассматривается возможный способ построения замкнутых систем оптимального быстродействия для не полностью определённых линейных моделей объектов управления с распределёнными параметрами параболического типа, обеспечивающий идентификацию в реальном времени их параметрических характеристик по результатам наблюдения состояния объектов. Структурно-параметрический синтез предлагаемых регуляторов использует альтернансный метод расчёта оптимальных программных управлений. Приводится представляющий самостоятельный интерес пример построения системы оптимального по быстродействию управления процессом индукционного нагрева в характерных условиях интервальной неопределённости значений начальной температуры и уровня тепловых потерь.

Ключевые слова: объекты с распределёнными параметрами, оптимальное по быстродействию управление, альтернансный метод, функция переключения, структурно-параметрический синтез, интервальные неопределённости.

Введение. Классические методы построения алгоритмов и систем управления (СУ) динамическими объектами разработаны применительно к соответствующим формальным моделям управляемых процессов с полным объёмом необходимой информации об их свойствах. В связи с этим возникает актуальная задача синтеза управляющих алгоритмов в практически всегда реализуемых условиях неопределённости характеристик объекта, обусловленной прежде всего неточным знанием его параметров и действием неконтролируемых внешних возмущений.

В типичных ситуациях речь идёт об ограниченной (интервальной) неопределённости неизвестных величин, вся информация о которых исчерпывается заданными границами диапазона изменения их возможных значений. Указанная проблема является одной из центральных и наиболее сложных в современной теории управления. Известные теоретические результаты приводят к весьма сложному с точки зрения технической реализации алгоритмическому обеспечению предлагаемых стратегий управления неопределёнными объектами даже для сравнительно простых модельных постановок подобных задач. В соответствии с вышеизложенным самостоятельный интерес приобретает проблема развития прикладной теории управления динамическими объектами в условиях ограниченной

^{*}Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 15-08-01347).

неопределённости, позволяющей на основе дополнительной информации о фундаментальных закономерностях конкретной предметной области построить предельно упрощённые в рамках заданной точности выполнения предъявляемых требований и технически реализуемые структуры СУ.

В данной работе предлагаются возможные пути решения этой проблемы в наименее изученной области управления объектами с распределёнными параметрами (ОРП), описываемыми уравнениями в частных производных параболического типа, применительно к центральной задаче синтеза оптимальных по быстродействию регуляторов в характерных условиях интервальной неопределённости параметрических характеристик ОРП.

Постановка задачи. Пусть управляемая функция состояния Q(x,t) ОРП описывается в зависимости от пространственной координаты $x \in [x_0, x_1]$ и времени $t \in [0, T]$ бесконечной системой дифференциальных уравнений для коэффициентов $z_n(t)$ разложения Q(x,t) в сходящийся в среднем бесконечный ряд по некоторой полной ортонормированной системе базисных функций $\varphi_n(x), n = 1, 2, ...$

$$\frac{dz_n}{dt} = f_n(z, u, w, t), \quad z_n(0) = z_n^0, \ t \in [0, T], \ n = 1, 2, \dots,$$
(1)

$$Q(x,t) = \sum_{n=1}^{\infty} z_n(t)\varphi_n(x), \quad x \in [x_0, x_1],$$
(2)

применительно к типовой модели ОРП в форме стационарного пространственно одномерного уравнения в частных производных параболического типа с краевыми условиями Дирихле, Неймана или их линейной комбинацией [1]. Здесь $z = (z_n)$ — бесконечномерный вектор фазовых координат; u(t) — сосредоточенное скалярное управляющее воздействие, принадлежащее к классу кусочно-непрерывных функций; $w \in E^q$, $1 \leq q < \infty$, — вектор неизменных во времени неопределённых параметров объекта, характеризующих внешние и параметрические возмущения, и заданные функции f_n удовлетворяют обычным требованиям по их гладкости.

Пусть далее информация о начальном состоянии $z^0 = (z_n^0)$ и значениях w исчерпывается условиями их принадлежности к компактным множествам Z^0 и W:

$$z^0 \in Z^0; \quad w \in W, \tag{3}$$

а допустимые значения управления стеснены ограничением с известными величинами u_{\min} и u_{\max} :

$$u(t) \in U; \quad \forall t \in [0, T], \quad U = \{u(t): u_{\min} \le u(t) \le u_{\max} \,\forall t \in [0, T]\}.$$
 (4)

Каждой фиксированной паре значений неопределённых факторов $y = (z^0, w) \in Y = Z^0 \times W$ при любом допустимом управлении u(t) соответствует определяемая решением системы уравнений (1) траектория процесса $z(t, u(\cdot), y)$, оканчивающаяся в точке $z^1(y, T) = z(T, u(\cdot), y)$ в заданный или не фиксированный заранее конечный момент времени t = T, и управляемая функция состояния

$$Q(x, u(\cdot), y, t) = \sum_{n=1}^{\infty} z_n(t, u(\cdot), y)\varphi_n(x)$$
(5)

согласно (2), а объединение этих траекторий по всем возможным величинам y при одном и том же управляющем воздействии образует ансамбль [2]

$$Z(t, u(\cdot), y) = Z(t, u(\cdot), z^0, w) = \bigcup \{ z(t, u(\cdot), z^0, w) \mid z^0 \in Z^0, \ w \in W, \ t \in [0, T] \}.$$
 (6)

При заданных достижимых целевых множествах требования к конечному состоянию системы, которые должны быть выполнены для всех $y \in Y$, в достаточно общем случае предъявляются в виде некоторого условия, гарантирующего «попадание» ансамбля с допустимой погрешностью ε_0 в заданную конечную точку z^* при любой возможной реализации значений z^0 и w в предположении управляемости объекта (1)–(6) относительно области фазового пространства, удовлетворяющей указанным требованиям. Если при этом целевое множество определяется характерными для приложений чебышевскими оценками допусков отклонения от z^* [3], то такое условие может быть записано в форме допустимой точности $\varepsilon_0 > 0$ равномерного приближения конечного состояния объекта $Q(x, u(\cdot), y, T)$ к заранее фиксированному распределению $Q^*(x)$ для всех возможных величин $y \in Y$ [4]:

$$\max_{y \in Y} \left[\max_{x \in [x_0, x_1]} |Q(x, u(\cdot), y, T) - Q^*(x)| \right] \le \varepsilon_0, \tag{7}$$

где $Q^*(x)$ и z^* связаны соотношением (2).

Пусть качество процесса управления оценивается функционалом

$$I_1(u(\cdot), y, T) = \int_0^T f_0(z(t, u(\cdot), y), u(t), y, t) dt + F_0(z(T, u(\cdot), y), y, T) \to \min_{u(\cdot) \in U},$$
(8)

где f_0 и F_0 — заданные достаточно гладкие функции своих аргументов.

При отсутствии дополнительной информации, снижающей степень неопределённости исходных данных (3), можно сформулировать в соответствии с принципом гарантированного результата следующую минимаксную задачу робастной оптимизации при управлении ансамблем траекторий (6) управляемого процесса.

Требуется найти программное оптимальное управление $u^*(t) \in U$, которое обеспечивает для объекта (1)–(6) выполнение условия (7) при минимальном значении критерия оптимальности

$$I_2(u(\cdot),T) = \max_{y \in Y} I_1(u(\cdot),y,T) \to \min_{u(\cdot) \in U}.$$
(9)

Способ решения этой задачи на основе альтернансного метода решения задач программного управления ОРП предложен в [5].

Если в крайней ситуации в СУ может быть получена в реальном масштабе времени достоверная информация о реализуемой в каждом конкретном случае величине $y = \tilde{y} \in Y$ путём наблюдения за поведением управляемой величины, то дальнейшая проблема сводится к детерминированной задаче построения замкнутой системы оптимального управления с обратными связями, обеспечивающей перевод объекта (1), (2), (4) в конечное состояние вида (7) с заданной точностью $\tilde{\varepsilon}_0(\tilde{y}) \leq \varepsilon_0$ при минимальном значении функционала (8) для каждой из допустимых величин $y = \tilde{y} = (\tilde{z}^0, \tilde{w}) \in Y$:

$$\max_{x \in [x_0, x_1]} |Q(x, u(\cdot), \tilde{y}, T) - Q^*(x)| \le \tilde{\varepsilon}_0(\tilde{y}).$$

$$\tag{10}$$

Очевидно, что в таком случае может быть обеспечен значительный выигрыш как по величине критерия (9), так и по предельно достижимым значениям $\tilde{\varepsilon}_0(\tilde{y})$ в (10) по сравнению с ε_0 в (7). В пренебрежении инерционностью и погрешностями процедур наблюдения и идентификации величина \tilde{y} определяется по некоторой заранее фиксированной детерминированной зависимости F(Q(x,t)) от результатов всегда неполного наблюдения за текущим состоянием Q(x,t) ОРП:

$$\tilde{y} = (\tilde{z}^0, \tilde{w}) = F(Q(x, t)), \tag{11}$$

где F(Q(x,t)) следует выбрать из условий минимальной сложности технической реализации СУ на множестве возможных вариантов, обеспечивающих требуемую точность вычисления \tilde{y} .

Достаточным основанием для подобного идеализированного описания идентификатора, реализуемого в форме (11), является известная теорема разделения [6], согласно которой такое представление становится возможным при надлежащем проектировании наблюдателя состояния с требуемыми динамическими свойствами, эффективно функционирующего в условиях воздействия случайных помех.

В итоге возникает задача проектирования идентификатора (11) и синтеза регулятора $u^* = u^*(Q(x,t))$, обеспечивающих решение детерминированной краевой задачи (1), (2), (4), (10), (11) с минимальным значением критерия оптимальности (8) при $z^0 = \tilde{z}^0$, $w = \tilde{w}$ в (3).

Задача синтеза оптимальных по быстродействию систем управления детерминированными моделями ОРП. Рассмотрим сначала соответствующую детерминированную задачу (1)–(5), (8), (10), (11) синтеза оптимальной по быстродействию СУ с $f_0(\cdot) \equiv 1, F_0(\cdot) \equiv 0$ в (8) для любого заранее фиксированного значения $y = \tilde{y} = (\tilde{z}^0, \tilde{w}) \in Y$. Применительно к базовому критерию быстродействия оптимальное программное управление $u^*(t)$ объектом (1), (2), (4), (10) при $y = \tilde{y}$ следует искать в классе релейных функций, попеременно принимающих на промежутке [0, T] только свои предельно допустимые значения u_{\min} и u_{\max} в (4) [7]. Тем самым $u^*(t)$ определяется априори с точностью до числа N и длительностей $\Delta_i, i = \overline{1, N}$, интервалов своего постоянства.

Синтез оптимального регулятора по общему методу фазового пространства [8] приводит в такой задаче к технически нереализуемому алгоритму релейного управления

$$u^{*}(z) = \frac{u_{\max} + u_{\min}}{2} \pm \frac{u_{\max} - u_{\min}}{2} \operatorname{sign}h(z)$$
(12)

с обратными связями по всем координатам вектора z и гиперповерхностью переключения h(z) = 0 в бесконечномерном пространстве состояний объекта (1), построение которой практически невозможно.

Переход к реализуемой замкнутой СУ с неполным измерением состояния $\tilde{Q}(x,t) = (Q(\tilde{x}_j,t)) = Q_j(t)), j = \overline{1,N}$, в некоторых N точках $\tilde{x}_j \in [x_0,x_1]$ обеспечивается выбором другой, отличной от h(z), функции переключения $h_1(\tilde{Q},\tilde{y})$ в форме линейной комбинации N сигналов обратной связи по измеряемым величинам $Q_j(t)$ с коэффициентами передачи $\rho_j(\tilde{y})$ [4]:

$$h_1(\tilde{Q}, \tilde{y}) = \sum_{j=1}^N \rho_j(\tilde{y}) (Q_j^T(\tilde{y}) - Q_j(t)),$$
(13)

где $Q_j^T(\tilde{y}) = Q_j(T)$ — значения Q_j в конце оптимального процесса управления.

Если выбрать в качестве $\rho_j(\tilde{y})$ нетривиальные решения однородной системы N-1 линейных уравнений с N неизвестными:

$$\sum_{j=1}^{N} \rho_j(\tilde{y})(Q_j^T(\tilde{y}) - Q_j(\tilde{t}_s)) = 0, \quad s = \overline{1, N - 1},$$
(14)

где \tilde{t}_s , $s = \overline{1, N-1}$, — расчётные моменты переключения оптимального по быстродействию программного управления $u^*(t)$ релейной формы с N интервалами постоянства длительностью Δ_i^* , $i = \overline{1, N}$, определяемые вместе с $Q_j(\tilde{t}_s)$ и $Q_j^T(\tilde{y})$ для заданной величины $\tilde{\varepsilon}_0(\tilde{y})$ при расчёте $u^*(t)$ альтернансным методом [4, 9, 10], то $h_1(\tilde{Q}, \tilde{y})$ в (13) меняет знак при переходе через нуль вместе с h(z) при $t = \tilde{t}_s$ и только в эти моменты времени в силу чебышевских свойств функции $h_1(\tilde{Q}, \tilde{y})$, которая не может иметь более N-1 нулей на $[0,T] \ni t$ [4, 9].

Здесь предполагается, что $N = \text{const } \forall \tilde{y} \ni Y$, например, в характерной ситуации равенства $\tilde{\varepsilon}_0(\tilde{y}) = \varepsilon_{\min}^{(N)}(\tilde{y})$, когда допустимая погрешность равномерного приближения $\tilde{\varepsilon}_0(\tilde{y})$ в (10) принимается равной её минимально достижимой величине $\varepsilon_{\min}^{(N)}(\tilde{y})$ в классе релейных управлений рассматриваемого вида с N интервалами постоянства [4, 9, 10].

Таким образом, при замене h(z) в (12) величиной $h_1(Q, \tilde{y})$ из (13) алгоритм (13) обеспечивает автоматическую отработку оптимального по быстродействию программного управления $u^*(t)$ для заранее фиксированного значения $\tilde{y} \in Y$. В итоге получаем уравнение оптимального регулятора в детерминированной задаче быстродействия

$$u^*(\tilde{Q}, \tilde{y}) = \frac{u_{\max} + u_{\min}}{2} \pm \frac{u_{\max} - u_{\min}}{2} \operatorname{sign} h_1(\tilde{Q}, \tilde{y}).$$
(15)

Идентификация неопределённых факторов в реальном масштабе времени. Построение замкнутой системы оптимального по быстродействию управления с регулятором (13)–(15) в условиях интервальной неопределённости значений $y \in Y$ требует дополнения её структуры идентификатором (11) реализуемых величин $y = \tilde{y}$ по результатам наблюдения текущего состояния $Q_C(x,t) = (Q(\bar{x}_j,t) = \bar{Q}_j(t))$ в некоторых r точках $\bar{x}_j \in [x_0, x_1], j = \overline{1, r}$, частично или полностью совпадающего с измеряемыми величинами $\tilde{Q}(x,t)$ в (13)–(15) в зависимости от соотношения между числом N интервалов постоянства $u^*(t)$ и размерностью r вектора $y = (y_m), m = \overline{1, r}$, учитываемого в рассматриваемой конкретной ситуации:

$$Q_j(t) = \overline{Q}_j(t), \quad j = \overline{1, \mu}, \ \mu = \min\{N, r\}.$$

$$(16)$$

Для некоторого заданного момента времени $t^0 \in (0, \Delta_1^*)$ в пределах первого интервала постоянства оптимального управления $u^*(t)$ интегрирование уравнений (1) модели ОРП позволяет найти в форме (2) непрерывные и непрерывно дифференцируемые зависимости $g_j(y, t^0)$ от y для каждой из величин $\bar{Q}_j(t^0), j = \overline{1, r}$, при всех $y \in Y$.

Соответствующая система равенств

$$\bar{Q}_j(t^0) = g_j(y_1, y_2, \dots, y_r, t^0), \quad j = \overline{1, r}, \ y \in Y,$$
(17)

определяет значения y в окрестности некоторой заданной номинальной точки $y = y_H = (y_{mH}), m = \overline{1, r}$, как неявно заданные, однозначные, непрерывные и непрерывно дифференцируемые по всем аргументам функции

$$y_m = F_m(\bar{Q}_1(t^0), \bar{Q}_2(t^0), \dots, \bar{Q}_r(t^0)), \quad m = \overline{1, r},$$
(18)

от наблюдаемых переменных $\bar{Q}_j(t^0),$ если якобиан системы (17)

$$J = \begin{vmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & \cdots & \frac{\partial g_1}{\partial y_r} \\ \cdots & \cdots & \cdots \\ \frac{\partial g_r}{\partial y_1} & \frac{\partial g_r}{\partial y_2} & \cdots & \frac{\partial g_r}{\partial y_r} \end{vmatrix}_{y=y_H}$$
(19)

отличен от нуля в точке $y = y_H$ [11]. Последнее условие, как правило, можно считать выполненным для системы r линейно независимых функций $\bar{Q}_j(t)$, $j = \overline{1, r}$. По известным правилам дифференцирования неявно заданных функций [11] могут быть заранее вычислены при заданных зависимостях $g_j(y, t^0)$ в (17) производные всех функций F_m в (18) любого порядка по соответствующей комбинации переменных \bar{Q}_j в точке $y = y_H$ при $\bar{Q}_j = \bar{Q}_j(y_H, t^0)$, $j = \overline{1, r}$. В частности, здесь

$$\left(\frac{\partial y_m}{\partial \bar{Q}_j}\right)_{y=y_H} = \frac{1}{J} \begin{vmatrix} \frac{\partial g_1^0}{\partial y_1} & \cdots & \frac{\partial g_1^0}{\partial y_{m-1}} & 0 & \frac{\partial g_1^0}{\partial y_{m+1}} & \cdots & \frac{\partial g_1^0}{\partial y_r} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\partial g_j^0}{\partial y_1} & \cdots & \frac{\partial g_j^0}{\partial y_{m-1}} & 1 & \frac{\partial g_j^0}{\partial y_{m+1}} & \cdots & \frac{\partial g_j^0}{\partial y_r} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\partial g_r^0}{\partial y_1} & \cdots & \frac{\partial g_r^0}{\partial y_{m-1}} & 0 & \frac{\partial g_r^0}{\partial y_{m+1}} & \cdots & \frac{\partial g_r^0}{\partial y_r} \end{vmatrix}_{y=y_H}$$
(20)

$$g_k^0 = g_k(y_1, \dots, y_r, t^0) - \bar{Q}_k(t^0), \ k, m, j = \overline{1, r}.$$

Аналогичным образом можно получить по правилам [11] и производные более высокого порядка, например, следующие выражения для вторых производных $\frac{\partial^2 y_m}{\partial \bar{Q}_j \partial \bar{Q}_s}$:

где

$$\Phi_{kjs} = \left\{ \left[\frac{\partial^2 g_k^0}{\partial y_1^2} \frac{\partial y_1}{\partial \bar{Q}_s} + \ldots + \frac{\partial^2 g_k^0}{\partial y_1 \partial y_r} \frac{\partial y_r}{\partial \bar{Q}_s} \right] \frac{\partial y_1}{\partial \bar{Q}_j} + \ldots \right\}$$

$$\dots + \left[\frac{\partial^2 g_k^0}{\partial y_r \partial y_1} \frac{\partial y_1}{\partial \bar{Q}_s} + \dots + \frac{\partial^2 g_k^0}{\partial y_r^2} \frac{\partial y_r}{\partial \bar{Q}_s}\right] \frac{\partial y_r}{\partial \bar{Q}_j} \Big\}_{y=y_H}, \quad k, j, s = \overline{1, r},$$
(22)

и значения $(\partial y_m/\partial \bar{Q}_j)_{y=y_H}, j=\overline{1,r}$, вычисляются согласно (20).

По значениям найденных таким способом производных в точке $y = y_H$ каждая из функций F_m в (18) восстанавливается в форме её разложения в бесконечный сходящийся кратный ряд Тейлора по переменным \bar{Q}_{j} . В линейном приближении, которым можно ограничиваться в типичных ситуациях, подобное представление зависимости (11) приводит к выполняемому в реальном масштабе времени алгоритму идентификации неопределённых величин у в форме суммы сигналов линейных обратных связей по наблюдаемым переменным $\bar{Q}_{i}(t^{0})$ с заранее вычисленными по выражениям (20) коэффициентами передачи α_{mj} :

$$y_m = y_{mH} + \sum_{j=1}^r \alpha_{mj} (\bar{Q}_j(t^0) - Q_{jH}), \quad \alpha_{mj} = \left(\frac{\partial y_m}{\partial \bar{Q}_j}\right)_{y=y_H}, \quad Q_{jH} = g_j(y_H, t^0), \quad m = \overline{1, r}.$$
(23)

Синтез оптимальной по быстродействию СУ не полностью определёнными моделями ОРП. При наличии идентификатора (23) могут быть найдены подобные алгоритмы определения в реальном времени коэффициентов $\rho(\tilde{y})$ обратных связей и требуемые конечные значения $Q_{i}^{T}(\tilde{y})$ наблюдаемых переменных в структуре функции переключения (13) для вычисленных в процессе управления значений у.

По известным зависимостям $\rho_i(y)$, $i = \overline{1, N}$, которые определяются предварительным решением систем уравнений (14) для различных значений $y \in Y$ в окрестности y_H , находятся их линейные приближения с заранее рассчитанными коэффициентами β_{mi} :

$$\rho_i(y) = \rho_i(y_H) + \sum_{m=1}^r \beta_{mi}(y_m - y_{mH}), \quad \beta_{mi} = \left(\frac{\partial \rho_i}{\partial y_m}\right)_{y=y_H}, \quad i = \overline{1, N}.$$
 (24)

После подстановки в (24) разносте
й y_m-y_{mH} из (23) получим следующий алгоритм вычисления в реальном времени коэффициентов обратных связей в (13) по наблюдаемым переменным $\bar{Q}_{i}(t^{0})$:

$$\rho_i(y) = \rho_i(y_H) + \sum_{j=1}^r \gamma_{ij}(\bar{Q}_j(t^0) - \bar{Q}_{jH}), \quad \gamma_{ij} = \sum_{m=1}^r \alpha_{mj}\beta_{mi}, \quad i = \overline{1, N},$$
(25)

где γ_{ij} находятся по уже известным величинам α_{mj} и β_{mi} . Подобным способом вычисляются значения $Q_i^T(\tilde{y}), i = \overline{1, N}$, в (13):

$$Q_i^T(y) = Q_i^T(y_H) + \sum_{j=1}^r \gamma_{ij}^* (\bar{Q}_j(t^0) - \bar{Q}_{jH}),$$

$$\gamma_{ij}^* = \sum_{m=1}^r \alpha_{mj} \beta_{mi}^*, \quad i = \overline{1, N}, \quad \beta_{mi}^* = \left(\frac{\partial Q_i^T}{\partial y_m}\right)_{y=y_H}.$$
(26)

Здесь аналогично (24) коэффициенты β_{mi}^* должны быть найдены по предварительно рас-считанным при поиске оптимального программного управления альтернансным методом значениям $Q_i^{\hat{T}}(y)$ в окрестности точки $y = y_H$. Алгоритм управления (13)–(15), (25), (26) (где следует заменить \tilde{y} величиной y в (13)–

(15)) с априори фиксируемыми коэффициентами $\gamma_{ij}, \gamma_{ij}^*$ и значениями $\rho_i(y_H), \bar{Q}_{jH}, Q_i^T(y_H)$

определяет в совокупности процедуру структурно-параметрического синтеза замкнутой системы оптимального по быстродействию управления ОРП с идентификатором (23) при неполном измерении состояния объекта в реальном времени в условиях интервальной неопределённости его параметров $y \in Y$.

Предлагаемый метод синтеза замкнутых систем оптимального быстродействия может быть распространён на более сложные пространственно-многомерные модели ОРП с предварительным определением коэффициентов α_{mj} , β_{mi} и β_{mi}^* по результатам численного моделирования процессов программного управления.

Система оптимального по быстродействию управления индукционным нагревом металла. Температурное поле $Q(x,t), x \in [0, 1]$, в процессе индукционного нагрева металлического изделия цилиндрической формы с сосредоточенным управляющим воздействием $u(t) \in [0, u_{\text{max}}] \forall t \in [0, T]$ по мощности внутреннего тепловыделения описывается при граничных условиях третьего рода [12] в линейном одномерном приближении бесконечной системой дифференциальных уравнений (1) в относительных единицах [13]:

$$f_n(z, u, w, t) = -\mu_n^2 z_n + W_n(\xi)u(t) + \mu_n J_1(\mu_n)Q_c(t), \quad z_n(0) = Q_{0n}, \quad n = 1, 2, \dots$$
(27)

Здесь

$$W_n(\xi) = \int_0^1 W(\xi, x) x J_0(\mu_n x) dx; \quad Q_{0n} = \int_0^1 Q_0(x) x J_0(\mu_n x) dx;$$
(28)

 $Q_c(t)$ — температура окружающей индуктор среды; $Q_0(x)$ — начальное распределение температур; $J_0(y), J_1(y)$ — функции Бесселя нулевого и первого порядка соответственно; $W(\xi, x)$ — известная функция радиального распределения электромагнитных источников тепла для заданного значения характерного параметра ξ , определяемого, в свою очередь, частотой питающего индуктор тока, электропроводностью нагреваемого материала и размерами цилиндра; μ_n — бесконечно возрастающая последовательность $\mu_1 < \mu_2 < \mu_3 < \ldots$ корней трансцендентного уравнения

$$\psi J_0(\mu) - \mu J_1(\mu) = 0, \tag{29}$$

вычисляемых в зависимости от значения безразмерного критерия ψ , характеризующего уровень тепловых потерь с боковой поверхности цилиндра в окружающую среду [13].

Подстановка решений уравнений (1) с правой частью (27) в формулу (2) приводит к следующему описанию распределения температурного поля по радиальной координате $x \in [0, 1]$ в форме его разложения в бесконечный ряд с улучшенной сходимостью вида (2) по собственным функциям $J_0(\mu_n x)$ для типичного случая $Q_0(x) = Q_c(t) = Q_0 = \text{const [13]}$:

$$Q(x,t) = Q_0 + \sum_{n=1}^{\infty} \frac{2W_n(\xi)\mu_n^2 J_0(\mu_n x)}{(\mu_n^2 + \psi^2) J_0^2(\mu_n)} \int_0^t e^{-\mu_n^2(t-\tau)} u(\tau) d\tau.$$
 (30)

Пусть далее вся информация о начальной температуре Q_0 и величине ψ в (29), характеризующей уровень тепловых потерь, исчерпывается сведениями об их принадлежности к допустимым интервалам возможных значений

$$Q_0 \in [Q_{0\min}, Q_{0\max}]; \quad \psi \in [\psi_{\min}, \psi_{\max}]$$
(31)

с известными границами $Q_{0\min}, Q_{0\max}, \psi_{\min}, \psi_{\max}$.

Рассмотрим теперь сформулированную выше задачу синтеза оптимальной по быстродействию системы управления объектом (1), (27) в условиях ограниченной неопределённости его характеристик, порождаемой вектором $y = (y_1, y_2) \in Y$, $y_1 = Q_0$, $y_2 = \psi$, не полностью определённых факторов (31), где Y — множество всех допустимых по ограничениям (31) комбинаций величин Q_0 и ψ .

Пусть в соответствии с требованиями вида (10) к конечному температурному состоянию необходимо обеспечить равномерный нагрев тела до заданной температуры $Q^* = \text{const}$ с предельно достижимой точностью $\tilde{\varepsilon}_0(\tilde{y}) = \varepsilon_{\min}^{(2)}(\tilde{y})$ в классе оптимальных по быстродействию двухинтервальных (N = 2) управляющих воздействий релейной формы для любого реализуемого значения $\tilde{y} \in Y$ вектора неопределённых величин в (31) [13–16]:

$$u(t) = \begin{cases} u_{\max}, & t \in (0, \Delta_1), \\ 0, & t \in (\Delta_1, \Delta_1 + \Delta_2). \end{cases}$$
(32)

При синтезе СУ предлагаемым способом функция переключения (13) формируется при N = 2 сигналами обратной связи по непосредственно измеряемым температурам $Q_1(t)$, $Q_2(t)$ в двух точках \tilde{x}_1, \tilde{x}_2 по радиусу цилиндра, в роли которых можно принять [4, 13] точки $\tilde{x}_1 = 1$, $\tilde{x}_2 = 0$ на его поверхности и оси соответственно. Согласно известным альтернансным свойствам результирующих температурных состояний оптимального процесса индукционного нагрева [13–16] конечные значения Q_1^T и Q_2^T температур в этих точках должны быть одинаковы и равны $Q^* - \varepsilon_{\min}^{(2)}$. Если принять для определённости $\rho_1 = 1$, то функция переключения (13) в таком случае будет иметь следующий вид:

$$h_1(Q_1, Q_2, \tilde{y}) = Q^* - \varepsilon_{\min}^{(2)}(\tilde{y}) - Q_1(t) + \rho_2(\tilde{y})(Q^* - \varepsilon_{\min}^{(2)}(\tilde{y}) - Q_2(t)),$$
(33)

а алгоритм оптимального управления с обратными связями запишется выражением (15) с заменой \tilde{y} неопределённой величиной $y \in Y$:

$$u^*(Q_1, Q_2, y) = \frac{u_{\max}}{2} \left[1 \pm \operatorname{sign} h_1(Q_1, Q_2, y) \right],$$
(34)

где для каждого фиксированного значения $y = \tilde{y} \in Y$ коэффициент обратной связи ρ_2 и минимакс $\varepsilon_{\min}^{(2)}$ в (33) могут быть найдены при расчёте альтернансным методом оптимального программного управления с использованием равенств (14).

Алгоритм идентификации реализуемых в процессе управления значений y принимает в линейном приближении вид (23) при r = 2. Здесь зависимости $g_j(y_1, y_2, t^0), j = 1, 2, в$ (17)–(20) определяются выражением (30) для выбранного момента $t = t^0$ в пределах первого интервала постоянства оптимального управления $u^*(t)$. При независящем от значения y стартовом управлении $u^*(t) = u_{\max} \forall t \in (0, t^0)$ получим согласно (30)

$$g_j(Q_0,\psi,t^0) = Q_0 + u_{\max} \sum_{n=1}^{\infty} \frac{2W_n(\xi)J_0(\mu_n \tilde{x}_j)}{(\mu_n^2 + \psi^2)J_0^2(\mu_n)} \left(1 - e^{-\mu_n^2 t^0}\right), \quad j = 1, 2, \ \tilde{x}_1 = 1, \ \tilde{x}_2 = 0.$$
(35)

В таком случае будем иметь на основании (20), (35) выражения для коэффициентов обратных связей α_{mj} , m, j = 1, 2, в (23):

$$\alpha_{11} = \frac{1}{J} \left(\frac{\partial g_2}{\partial \psi} \right)_{y=y_H}; \quad \alpha_{12} = -\frac{1}{J} \left(\frac{\partial g_1}{\partial \psi} \right)_{y=y_H};$$

$$\alpha_{21} = -\alpha_{22} = -\frac{1}{J}, \quad J = \left(\frac{\partial g_2}{\partial \psi} - \frac{\partial g_1}{\partial \psi} \right)_{y=y_H}, \quad y_H = (Q_{0H}, \psi_H).$$
(36)

Вычисление $\partial g_k / \partial \psi$, k = 1, 2, в (36) должно быть выполнено с учётом зависимостей собственных чисел μ_n^2 в (35) от ψ согласно равенству (29), дифференцирование которого по ψ позволяет найти производные

$$\frac{d\mu_n}{d\psi} = \frac{\cos^2 \mu_n}{\sin \mu_n \cdot \cos \mu_n + \mu_n}, \quad n = 1, 2, \dots$$

Линейные приближения зависимостей коэффициента обратной связи $\rho_2(y)$ и значений температур $Q_1^T(y) = Q_2^T(y) = Q^* - \varepsilon_{\min}^{(2)}(y)$ от $y = (Q_0, \psi)$, фигурирующих в выражении (33) для функции переключения $h_1(Q_1, Q_2, y)$, принимают вид (25), (26), где должны быть предварительно найдены, наряду с α_{mj} , коэффициенты β_{mj} и β_{mi}^* для m, i = 1, 2 в (24), (26).

Поскольку эти коэффициенты являются сложными и неявно заданными функциями y_H , они могут быть определены с удовлетворительной точностью по приближённым выражениям

$$\beta_{mi} = \left(\frac{\partial \rho_i}{\partial y_m}\right)_{y=y_H} \approx \frac{\rho_i(y^{(m)}) - \rho_i(y_H)}{y_m - y_{mH}};$$

$$\beta_{mi}^* = \left(\frac{\partial Q_i^T}{\partial y_m}\right)_{y=y_H} \approx \frac{Q_i^T(y^{(m)}) - Q_i^T(y_H)}{y_m - y_{mH}}, \quad m, i = 1, 2,$$

$$y^{(1)} = (y_1, y_{2H}), \quad y^{(2)} = (y_{1H}, y_2),$$

(37)

при достаточно малых фиксированных значениях приращений $y_m - y_{mH}$, m = 1, 2, где соответствующие значения $\rho_i(y^{(m)})$ находятся альтернансным методом при расчёте оптимального программного управления для детерминированной задачи с $\tilde{y} = y^{(m)}$.

В итоге алгоритм управления (33), (34) после замены \tilde{y} величиной y в (33) с идентификацией состояния (23) по наблюдаемым значениям $\bar{Q}_1(t) = Q_1(t)$, $\bar{Q}_2(t) = Q_2(t)$ в соответствии с (16) при N = r, с автоматической коррекцией обратных связей (25) и требуемых конечных температур (26) при априори фиксируемых коэффициентах в выражениях (25), (26) согласно (36), (37) полностью определяет структуру замкнутой системы оптимального по быстродействию управления объектом (27)–(30) в условиях (31) интервальной неопределённости параметров Q_0 и ψ (рис. 1).

Для исходных номинальных данных, отвечающих процессу индукционного нагрева цилиндрических слитков из титановых сплавов диаметром 0,54 м перед последующей операцией горячего прессования [13–16] $\xi = 4$, $\psi_H = 0,7$, $Q^* = 1050$ °C, $Q_{0H} = 30$ °C, $u_{\text{max}} = 393 \text{ kBt/m}^3$, получены следующие значения коэффициентов в (23)–(26) на основании (35)–(37):

$$\begin{aligned} \alpha_{11} &= -0,19, \quad \alpha_{12} = 1,19, \quad \alpha_{21} = -0,06, \quad \alpha_{22} = 0,06, \\ \beta_{12} &= -0,002, \quad \beta_{22} = 2,07, \quad \gamma_{21} = -0,12, \quad \beta_{11} = \beta_{21} = 0, \\ \beta_{11}^* &= \beta_{12}^* = 0,04, \quad \beta_{21}^* = \beta_{22}^* = -48,33, \\ \gamma_{11} &= \gamma_{12} = 0, \quad \gamma_{22} = 0,12, \quad \gamma_{11}^* = \gamma_{21}^* = 2,87, \quad \gamma_{12}^* = \gamma_{22}^* = -2,84. \end{aligned}$$

На рис. 2 приведены некоторые результаты компьютерного моделирования системы оптимального по быстродействию управления, построенной по схеме рис. 1 для указанных

Рис. 1. Структурная схема замкнутой системы оптимального по быстродействию управления процессом индукционного нагрева с идентификатором параметров объекта при $\varepsilon_0 = \varepsilon_{\min}^{(2)}$

Рис. 2. Результирующее распределение температур $Q(x, u^*, T)$ по радиусу слитка при $\varepsilon_0 = \varepsilon_{\min}^{(2)}$ в системе оптимального по быстродействию управления процессом индукционного нагрева для детерминированных (сплошные кривые) и не полностью определённых (штриховые кривые) моделей ОРП: $1 - Q_0 = Q_{0H}$, $\psi = \psi_H = 0.7$; $2 - Q_0 = Q_{0H}$, $\psi = 1.05$; $3 - Q_0 = Q_{0H}$, $\psi = 0.5$

конкретных значений параметров объекта с использованием конечномерного приближения модели объекта (27)–(30) в виде параллельного соединения достаточно большого числа типовых апериодических звеньев [1]. Полученные данные, в частности, свидетельствуют об удовлетворительной точности приближения оптимальных процессов в замкнутом контуре в характерном для типовых ситуаций широком диапазоне изменения значения $\psi \in [0.5\psi_H, 1.5\psi_H], \psi_H = 0.7$, к детерминированным алгоритмам управления (13)–(15) для соответствующих заранее фиксированных значений $\tilde{\psi} \in [0.5\psi_H, 1.5\psi_H]$.

Предлагаемый метод структурно-параметрического синтеза оптимальной по быстродействию системы управления процессом индукционного нагрева может быть распространён на характерные задачи оптимизации температурных режимов с фазовыми ограничениями, в том числе с типичным ограничением на максимальную температуру

$$Q_{\max}(t) = \max_{x \in [0, R]} Q(x, t) \le Q_d \,\forall t \in [0, T]$$
(38)

с заданной предельно допустимой величиной Q_d [13–16]. Если в оптимальном по быстродействию режиме нагрева с двухинтервальным управлением вида (32) нарушается неравенство (38), то оптимальная программа $u^*(t)$ дополняется участком поддержания Q_{\max} на уровне Q_d с помощью управления $u_d(t)$, определяемого непосредственно из условий движения по ограничению (38) [13–16]:

$$u^{*}(t) = \begin{cases} u_{\max}, & t \in (0, t_{d}), \\ u_{d}(t), & t \in (t_{d}, \Delta_{1}), \\ 0, & t \in (\Delta_{1}, \Delta_{1} + \Delta_{2}), \end{cases}$$
(39)

где t_d — момент достижения равенства в (38) при $u^* = u_{\text{max}}$.

Тогда, полагая с малой погрешностью [13], что $Q_{\max}(t) = Q_1(t), t \in (0, \Delta_1)$, получаем вместо (34) следующий алгоритм управления в замкнутой системе оптимального быстродействия [4]:

$$u^{*} = \begin{cases} (u_{\max}/2)[1 + \operatorname{sign}h_{1}(Q_{1}, Q_{2}, y)] = u_{\max} \forall Q_{1}, Q_{2}: \quad h_{1} > 0, \quad Q_{1} < Q_{d}, \\ u_{d}(t) \forall Q_{1}, Q_{2}: \quad h_{1} > 0, \quad Q_{1} = Q_{d}, \\ (u_{\max}/2)[1 + \operatorname{sign}h_{1}(Q_{1}, Q_{2}, y)] = 0 \forall Q_{1}, Q_{2}: \quad h_{1} < 0, \quad Q_{1} < Q_{d}. \end{cases}$$

$$(40)$$

Функция переключения $h_1(Q_1, Q_2, y)$ в (40) сохраняется в форме (33) с изменяемыми значениями $\rho_2(\tilde{y})$, $\varepsilon_{\min}^{(2)}(\tilde{y})$, которые для каждого фиксируемого априори значения \tilde{y} попрежнему находятся вместе с $u_d(t)$ при расчёте программного управления альтернансным методом, но теперь уже согласно алгоритму (39) вместо (32) с новой расчётной величиной $\tilde{t}_1 = \Delta_1$ в (14) [4]. При этом сохраняются прежние значения параметров идентификатора (23) в (36) при выборе $t^0 < t_d$ в (35), но изменяются величины коэффициентов β_{mj} , β_{mi}^* (и, следовательно, $\gamma_{ij}, \gamma_{ij}^*$) в зависимостях (25), (26). Структура замкнутой системы оптимального быстродействия с алгоритмом управления (33), (34) (см. рис. 1) должна быть теперь дополнена согласно (40) узлом задержанной отрицательной обратной связи по температуре Q_1 [4] (рис. 3), где коэффициент обратной связи ρ_3 определяется требуемой точностью стабилизации Q_1 на уровне Q_d .

На рис. 4 представлены результаты компьютерного моделирования процесса управления индукционным нагревом слитка из титановых сплавов с фазовым ограничением (38) в замкнутой системе оптимального быстродействия с регулятором (40), полученные для вышеуказанных значений параметров объекта.

Puc. 3. Структурная схема замкнутой системы оптимального по быстродействию управления процессом индукционного нагрева с ограничением на максимальную температуру

Рис. 4. Оптимальный по быстродействию процесс управления нагревом слитка в замкнутой системе с ограничением на максимальную температуру $(Q_0 = Q_{0H}, \psi = \psi_H, Q_d = 1100 \text{ °C})$: *а* — оптимальное управление; *b* — температурное поле $(1 - Q_1(t), 2 - Q_2(t))$

Заключение. Предлагаемый в данной работе метод позволяет построить технически реализуемую замкнутую систему оптимального по быстродействию управления широким кругом ОРП с линейными обратными связями по неполному наблюдению состояния объекта в характерных условиях интервальной неопределённости его параметрических характеристик. Метод обеспечивает достаточно малую ошибку по сравнению с детерминированными алгоритмами оптимизации по критерию быстродействия в условиях полного объёма информации о величинах этих параметров.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Рапопорт Э. Я.** Структурное моделирование объектов и систем управления с распределенными параметрами. М.: Высш. шк., 2003. 299 с.
- 2. **Куржанский А. Б.** Управление и наблюдение в условиях неопределенности. М.: Наука, 1977. 392 с.
- 3. Коллатц Л., Крабс В. Теория приближений. Чебышевские приближения. М.: Наука, 1978. 272 с.
- 4. **Рапопорт Э. Я.** Оптимальное управление системами с распределенными параметрами. М.: Высш. шк., 2009. 677 с.
- 5. Рапопорт Э. Я. Робастная параметрическая оптимизация динамических систем в условиях ограниченной неопределенности // Автоматика и телемеханика. 1995. № 3. С. 86–96.
- 6. Дегтярев Г. Л., Сиразетдинов Т. К. Теоретические основы оптимального управления упругими космическими аппаратами. М.: Машиностроение, 1986. 214 с.
- 7. Бутковский А. Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965. 474 с.
- 8. Фельдбаум А. А. Основы теории оптимальных автоматических систем. М.: Наука, 1966. 623 с.
- 9. Рапопорт Э. Я. Альтернансный метод в прикладных задачах оптимизации. М.: Наука, 2000. 336 с.
- 10. Рапопорт Э. Я., Плешивцева Ю. Э. Алгоритмически точный метод параметрической оптимизации в краевых задачах оптимального управления системами с распределенными параметрами // Автометрия. 2009. 45, № 5. С. 103–112.
- Фихтенгольц Γ. М. Курс дифференциального и интегрального исчисления. М.: Физматгиз, 1962. Т. 1. 607 с.
- 12. **Картанов Э. М.** Аналитические методы в теории теплопроводности твердых тел. М.: Высш. шк., 2001. 550 с.
- Рапопорт Э. Я. Оптимизация процессов индукционного нагрева металла. М.: Металлургия, 1993. 278 с.
- 14. **Rapoport E., Pleshivtseva Yu.** Optimal Control of Induction Heating Processes. Boca Raton London New York: CRC Press, Taylor & Francis Group, 2007. 349 p.
- 15. Рапопорт Э. Я., Плешивцева Ю. Э. Оптимальное управление температурными режимами индукционного нагрева. М.: Наука, 2012. 309 с.
- Rapoport E. Ya., Pleshivtseva Yu. E. Optimal control of induction heating of metals prior to warm and hot forming // ASM Handbook. Vol. 4C. Induction Heating and Heat Treatment. USA: ASM International, 2014. P. 366–401.