УДК 517.95 : 519.24

МЕТОДИКА ПАССИВНОЙ ИДЕНТИФИКАЦИИ КОЭФФИЦИЕНТОВ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ С УЧЁТОМ ОШИБОК ОЦЕНОК СОСТОЯНИЯ ОБЪЕКТА И ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ

А. Ж. Абденов, Г. А. Абденова

Евразийский национальный университет им. Л. Н. Гумилева, 010008, Республика Казахстан, г. Астана, ул. К. Camnaeвa, 2 E-mail: amirlan21@gmail.com

Рассматривается задача пассивной идентификации коэффициентов уравнения теплопроводности с учётом шумов поведения модели динамики объекта и шумов модели измерительной системы. Использование метода конечных разностей позволило свести решение уравнений с частными производными к решению системы линейных конечно-разностных и алгебраических уравнений, описанных моделями в форме пространства состояний. Представление уравнения теплопроводности в форме такой модели даёт возможность применять алгоритм фильтра Калмана для достоверного оценивания поведения исследуемого объекта.

Ключевые слова: уравнение теплопроводности, модель в пространстве состояний, метод конечных разностей, пассивная идентификация коэффициентов, фильтр Калмана, вейвлет-преобразование.

DOI: 10.15372/AUT20160205

Введение. Разнообразие предлагаемых методов и алгоритмов идентификации систем с распределёнными параметрами в значительной степени определяется типом задаваемых априори уравнений в частных производных или частных разностях, которые моделируют идентифицируемый процесс (зависимость значений состояния объекта, например стержня, от двух независимых аргументов: фиксированных значений координат и фиксированных значений времени). Некоторая унификация при решении задачи идентификации коэффициентов уравнения теплопроводности [1] может быть достигнута, если исходное уравнение параболического типа представить моделями в форме пространства состояний с учётом шумов динамики исследуемого объекта и шумов измерительной системы [2, 3]:

$$X(t+1) = \Phi X(t) + Bv(t) + \Gamma \omega(t); \quad X(1) = X_1,$$
(1)

$$Y(t+1) = X(t+1) + \nu(t+1), \quad t = 1, 2, \dots,$$
(2)

где X(t) — *n*-вектор состояния исследуемого объекта; v(t) — (n + 2)-вектор входного управляющего сигнала; $\omega(t)$, $\nu(t)$ — одномерные белые гауссовские последовательности шумов динамической и измерительной систем с нулевыми математическими ожиданиями и неизвестными дисперсиями Q и R соответственно; X(1) — *n*-вектор начального состояния с математическим ожиданием \bar{X}_1 и неизвестной дисперсией P(1); Φ, B, Γ — переходные матрицы состояния, управления и шумов динамической системы размерами $n \times n$, $(n + 2) \times n$, $n \times n$ соответственно; Y(t) — *n*-вектор значений измерений состояния объекта; t — временной параметр.

В этом случае применение изученных и хорошо зарекомендовавших себя методов пассивной идентификации (в отличие от задач активной идентификации [4]) коэффициентов уравнения теплопроводности, описывающих динамику развития состояния объекта стохастическими обыкновенными дифференциальными или разностными уравнениями в форме пространства состояний, может оказаться предпочтительным и для систем с распределёнными параметрами [3–5].

1. Постановка задачи. Рассмотрим задачу теплопроводности для однородного стержня с теплоизолированной боковой поверхностью и тепловым источником вида [1]

$$\frac{\partial q(x,t)}{\partial t} = a \frac{\partial^2 q(x,t)}{\partial x^2} + bu(x,t) + p_1 \mu(x,t), \tag{3}$$

где a, b, p_1 — постоянные коэффициенты; x — пространственная ограниченная заданная длина стержня ($0 \le x \le L$); t — время ($t \ge 0$); u(x,t) — входное управляющее воздействие распределённого типа, которое удовлетворяет заданным амплитудным температурным ограничениям $u_{\min} \le u(x,t) \le u_{\max}$, $u_{\min} = \text{const}$, $u_{\max} = \text{const}$; $\mu(x,t)$ — белое гауссовское воздействие на динамику системы (зависящее от координаты x и времени t) с нулевым математическим ожиданием и постоянной дисперсией равной единице; аддитивное шумовое слагаемое $p_1\mu(x,t)$ имеет нулевое математическое ожидание и неизвестную дисперсию \tilde{Q} (для непрерывной функции состояния); q(x,t) — температура стержня в зависимости от координаты x и времени t с граничными условиями

$$q(x,t)\Big|_{x=0} = \tilde{q}_0, \tag{4a}$$

$$q(x,t)\Big|_{x=L} = \tilde{q}_L \tag{46}$$

и начальным условием

$$q(x,t)\Big|_{t=1} = f(x).$$
 (5)

Предположим, что ведётся измерение температуры в фиксированных точках x_k стержня в фиксированные моменты времени t_s , которое можно записать в виде

$$z(x_k, t_s) = q(x_k, t_s) + p_2 \varepsilon(x_k, t_s), \quad k = \overline{1, n}, \ s = \overline{1, m}.$$
(6)

Здесь $z(x_k, t_s)$ — выход измерительной системы, где индексы k и s означают, что пространственно-временная функция состояния q(x,t) может находиться в дискретных по длине стержня точках x_k и в дискретные моменты времени t_s , т. е. $\{q(x,t) \approx q(x_k,t_s) = q_{k,s}, k = \overline{1,n}, s = \overline{1,m}\}$; $\{\varepsilon(x_k,t_s) = \varepsilon_{k,s}, k = \overline{1,n}, s = \overline{1,m}\}$ — белый гауссовский шум измерительной системы распределённого типа с нулевым математическим ожиданием и дисперсией равной единице; шумовое слагаемое $p_2\varepsilon(x_k,t_s)$ имеет нулевое математическое ожидание и неизвестную дисперсию R.

При этих условиях ставится задача пассивной идентификации коэффициентов a, b, p_1 и неизвестных дисперсий Q, R, P(1) (для дискретного описания состояния объекта) на основе дискретного распределённого входного сигнала $\{u(x_k, t_s) = u_{k,s}, k = \overline{1, n}, s = \overline{1, m}\}$, краевых (4a), (4б) и начального (5) условий, а также дискретного распределённого выхода измерительной системы $\{z(x_k, t_s), k = \overline{1, n}, s = \overline{1, m}\}$. 2. Методика решения задачи пассивной идентификации. Алгоритм решения задачи пассивной параметрической идентификации коэффициентов уравнения (3) реализуется на компьютере с использованием дискретного аналога уравнения в частных производных.

Для упрощения последующих преобразований выберем интервалы квантования для xи t равными $\Delta x = 1$ и $\Delta t = 1$ соответственно. Запишем соотношения в частных разностях

$$\frac{1}{\Delta t}(q_{k,s+1} - q_{k,s}) = \frac{a}{\Delta x^2}(q_{k+1,s} - 2q_{k,s} + q_{k-1,s}) + bu_{k,s} + p_1\mu_{k,s}, \quad k = \overline{1,n}, \ s = \overline{1,m}.$$

Проведём группировки дискретных значений функций q(x,t) по величинам координат (k,s) узлов сетки и, учитывая значения интервалов $\Delta t = 1$ и $\Delta x = 1$, получим соотношение, в котором коэффициент при $q_{k,s}$ в правой части обозначим через d = 1 - 2a. Для (3) зададим соотношение

$$q_{k,s+1} = aq_{k-1,s} + dq_{k,s} + aq_{k+1,s} + bu_{k,s} + p_1\mu_{k,s}, \quad k = \overline{1,n}, \ s = \overline{1,m}.$$
(7)

Предположим, что $p_1\mu_{k,s}$ — белая гауссовская распределённая последовательность с нулевыми средними и конечными постоянными неизвестными дисперсиями $Q = p_1$.

Приведём уравнение (7) с некоторыми граничными и начальными условиями к стандартному виду модели в форме пространства состояний. Запишем систему уравнений, получаемых из (7), для k = 1, 2, ..., n:

$$\begin{cases} q_{1,s+1} = aq_{0,s} + dq_{1,s} + aq_{2,s} + bu_{1,s} + p_1\mu_{1,s} & (k = 1), \\ q_{2,s+1} = aq_{1,s} + dq_{2,s} + aq_{3,s} + bu_{2,s} + p_1\mu_{2,s} & (k = 2), \\ \dots & \dots & \dots & \dots & \dots & \dots \\ q_{n-1,s+1} = aq_{n-2,s} + dq_{n-1,s} + aq_{n,s} + bu_{n-1,s} + p_1\mu_{n-1,s} & (k = n - 1), \\ q_{n,s+1} = aq_{n-1,s} + dq_{n,s} + aq_{n+1,s} + bu_{n,s} + p_1\mu_{n,s} & (k = n). \end{cases}$$

$$(8)$$

Введём обозначения:

$$X_{s+1} \stackrel{\Delta}{=} \begin{pmatrix} q_{1,s+1} \\ q_{2,s+1} \\ \vdots \\ q_{n,s+1} \end{pmatrix}_{n \times 1}; \quad X_s \stackrel{\Delta}{=} \begin{pmatrix} q_{1,s} \\ q_{2,s} \\ \vdots \\ q_{n,s} \end{pmatrix}_{n \times 1}; \quad U_s \stackrel{\Delta}{=} \begin{pmatrix} u_{1,s} \\ u_{2,s} \\ \vdots \\ u_{n,s} \end{pmatrix}_{n \times 1};$$

$$\mu_s \stackrel{\Delta}{=} \begin{pmatrix} \mu_{1,s} \\ \mu_{2,s} \\ \vdots \\ \mu_{n,s} \end{pmatrix}_{n \times 1}; \quad e_1 \stackrel{\Delta}{=} \begin{pmatrix} a \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}_{n \times 1}; \quad e_2 \stackrel{\Delta}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ a \end{pmatrix}_{n \times 1}.$$

$$(9)$$

Для граничных условий (4а) и (4б) отдельно запишем выражения

$$\theta_s = q_{1,s}; \qquad \eta_s = q_{n+1,s}. \tag{10}$$

Для того чтобы (8) представить в векторно-матричном виде, введём следующие обозначения:

$$M \stackrel{\Delta}{=} \begin{pmatrix} d & a & 0 & 0 & \cdots & 0 & 0 & 0 \\ a & d & a & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a & d & a \\ 0 & 0 & 0 & 0 & \cdots & 0 & a & d \end{pmatrix}_{n \times n}$$
(11)
$$\bar{G} \stackrel{\Delta}{=} bE,$$
(12)

$$D \stackrel{\Delta}{=} p_1 E,\tag{13}$$

где E — единичная матрица размера $n \times n$; \bar{G} и D — диагональные матрицы размера $n \times n$. Далее с учётом обозначений (9)–(13) соотношение (8) запишем в векторно-матричном виде:

$$X_{s+1} = MX_s + \bar{G}U_s + D\mu_s + (e_1\theta_s + e_2\eta_s).$$
(14)

Форма представления моделей в пространстве состояний относительно выражения (14) требует введения дополнительных обозначений после некоторых преобразований. Пусть

$$\rho_s \stackrel{\Delta}{=} (e_1 \theta_s | 0_{n \times n} | e_2 \eta_s)_{n \times (n+2)} \tag{15}$$

или

$$\rho_{s} \stackrel{\Delta}{=} \left(\begin{array}{cccccc} \theta_{s} & 0 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & 0 & \eta_{s} \end{array} \right)_{n \times (n+2)} , \quad D \stackrel{\Delta}{=} \left(\begin{array}{ccccccc} p_{1} & 0 & \vdots & 0 & 0 \\ 0 & p_{1} & \vdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & 0 & \eta_{s} \end{array} \right)_{n \times (n+2)} .$$

С учётом (15) запишем расширенную матрицу управления:

$$G = (e_1 \vdots \bar{G} \vdots e_2)_{n \times (n+2)}.$$
(16)

Теперь n-вектор управления U_s расширим на две компоненты, предварительно введя обозначение

$$u_s = (\theta \ U_s \ \eta)_{(n+2)\times 1}^T, \tag{17}$$

где *T* — операция транспонирования.

Окончательно выражение (14) запишем как

$$X_{s+1} = MX_s + Gu_s + D\mu_s.$$
 (18)

Заметим, что по форме (18) совпадает с соотношением (1). При этом (n + 2)-векторстолбец $u_s = v(t)$ (временной параметр s = t) может принимать значения $s = \{1, 2, ..., m\}$, а начальные условия (5) будут иметь вид

$$X_{1} = \begin{pmatrix} q_{1,1} \\ q_{2,1} \\ \vdots \\ q_{n,1} \end{pmatrix} = \begin{pmatrix} f_{1,1} \\ f_{2,1} \\ \vdots \\ f_{n,1} \end{pmatrix}_{n \times 1}.$$
 (19)

Входные воздействия окончательно получат размерность вектора $(n + 2) \times 1$ и для $s = \{1, 2, \ldots, m\}$ примут вид $u_s = (\theta_s \ u_{1,s} \ u_{2,s} \ \cdots \ u_{n,s} \ \eta_s)_{(n+2) \times 1}^T$, а ненаблюдаемые шумовые воздействия — $\mu_s = (\mu_{1,s} \ \mu_{2,s} \ \cdots \ \mu_{n,s})_{n \times 1}^T$.

После введённых обозначений матрица G преобразуется к структуре

	(a	b	0	0	0	•••	0	0	0	0	0 `	١
۵	0	0	b	0	0	•••	0	0	0	0	0	
$G \stackrel{\Delta}{=}$		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	
	0	0	0	0	0	•••	0	0	b	0	0	
	0 /	0	0	0	0	•••	0	0	0	b	a ,	$I_{n \times (n+2)}$

Теперь примем обозначения для уравнения (6), которое описывает вход—выход измерительной системы:

$$\mathbf{y}_{s} = \begin{pmatrix} z_{1,s} \\ z_{2,s} \\ \vdots \\ z_{n,s} \end{pmatrix}_{n \times 1}, \quad \mathbf{X}_{s} = \begin{pmatrix} q_{1,s} \\ q_{2,s} \\ \vdots \\ q_{n,s} \end{pmatrix}_{n \times 1}, \quad \boldsymbol{\varepsilon}_{s} = \begin{pmatrix} \varepsilon_{1,s} \\ \varepsilon_{2,s} \\ \vdots \\ \varepsilon_{n,s} \end{pmatrix}_{n \times 1}, \quad s = 1, 2, \dots, m,$$

$$\mathbf{X}_1 = y_1. \tag{20}$$

Окончательно соотношение (6) можно записать в векторной форме:

$$\mathbf{y}_s = \mathbf{X}_s + \boldsymbol{\varepsilon}_s, \quad s = 1, 2, \dots, m. \tag{21}$$

Выражения (18), (19), (21) обозначают редуцированную модель стохастической системы уравнения теплопроводности, описываемую моделями в виде пространства состояний для (3)–(6).

Система (18) содержит три неизвестных коэффициента (структура матрицы M имеет лишь один неизвестный коэффициент a, матрица G — два неизвестных коэффициента a, b, а матрица D — один неизвестный коэффициент p_1), которые требуется оценить.

3. Пример методики идентификации коэффициентов уравнения теплопроводности. Рассмотрим два предпоследних уравнения из соотношения (8) при определённых фиксированных значениях *n* и *s* = 1, 2, ..., *m*. Раскроем коэффициент *d*, сгруппируем дискретные температурные величины в этих соотношениях и получим два уравнения с тремя неизвестными коэффициентами *a*, *b*, *p*₁:

$$\begin{cases}
q_{n-2,s+1} = aq_{n-3,s} + (1-2a)q_{n-2,s} + aq_{n-1,s} + bu_{n-1,s} + p_1\mu_{n-2,s}, \\
q_{n-1,s+1} = aq_{n-2,s} + (1-2a)q_{n-1,s} + aq_{n,s} + bu_{n,s} + p_1\mu_{n-1,s}.
\end{cases}$$
(22)

Слагаемое с p_1 есть коэффициент при шумовой ненаблюдаемой переменной μ . При этом p_1 количественно характеризует дисперсию шумов поведения динамики исследуемого объекта при предположении, что μ — стандартная гауссовская последовательность с нулевым средним и дисперсией равной единице.

Заметим, что для использования уравнений фильтра Калмана [2] в целях получения наиболее достоверных фильтрационных оценок состояния $(q_{k,s})$ исследуемого объекта требуются знания значений коэффициентов уравнения теплопроводности, дисперсий шумов динамики, начального состояния, измерительной системы, а также самих результатов наблюдений за объектом.

Чтобы вычислить дисперсии, необходимые для уравнений фильтра Калмана, в данной работе предлагается использовать эвристический инженерный алгоритм приближённого расчёта всех дисперсий моделей динамики и измерительной системы на основе всей совокупности наблюдений $\{z_{k,s}, k = \overline{1, n}, s = \overline{1, m}\}$ [5, 6].

Для этого мы будем применять другую, отличную от исходной, упрощённую линейную дискретную модель в форме пространства состояний, которая при фиксированных $k = 1, 2, \ldots, n$ может соответствовать модели вида

$$x(t_{s+1}) = x(t_s) + w(t_s), \quad x(t_1) = x_1,$$

$$y(t_{s+1}) = x(t_{s+1}) + v(t_{s+1}), \quad s = \overline{1, m-1},$$

где $x(t_s)$ — истинное значение состояния исследуемого объекта от момента t_s до момента t_{s+1} , представляющего собой некоррелированную последовательность с нулевым средним и неизвестной дисперсией $p_1 E[(\mu(t_s))^2] \approx \sigma_{\mu}^2 = Q; v(t_s)$ — случайная последовательность с неизвестными средним значением $E[\varepsilon(t_s)] = \rho$ и дисперсией $p_2 E[(\varepsilon(t_s))^2] \approx \sigma_v^2 = R$. Зафиксируем значение k. Например, пусть k = 1, тогда для дальнейших расчётов будем использовать данные измерений, которые соответствуют этому значению индекса, а именно $\{\tilde{y}(t_s) = z_{1,s}, k = 1, s = \overline{1, m}\}.$

Для оценивания среднего значения сформируем последовательность псевдоизмерений следующим образом:

$$w(t_s)^{(2)} = \tilde{y}(t_s) - \tilde{y}(t_{s-1}), \quad s = 2, 3, \dots, m.$$
(23)

Верхний индекс при переменных означает количество измерений, используемых для формирования псевдоизмерений. Предположим, что ρ постоянно и позволяет записать соотношение

$$w(t_s)^{(2)} = \rho + \tilde{w}(t_s).$$
(24)

При этом оценка значения ρ в предположении о её постоянстве определяется рекуррентным выражением

$$\hat{\rho}(t_s \mid t_s) = \hat{\rho}(t_{s-1} \mid t_{s-1}) + \frac{1}{4(m+3)} abs(w(t_s)^{(2)} - \hat{\rho}(t_{s-1} \mid t_{s-1})), \quad s = \overline{2, m},$$
(25)

с начальным условием $\hat{\rho}(t_1 \mid t_1) = 0.$

Можно рассмотреть выражение для невязки упрощённого фильтра по трём наблюдениям в виде

$$w(t_s)^{(3)} = \tilde{y}(t_s) - \frac{1}{2} \,\tilde{y}(t_{s-1}) - \frac{1}{2} \,\tilde{y}(t_{s-2}), \quad s = 3, 4, \dots \,.$$
(26)

Средние значения невязок: $E[w(t_s)^{(2)}] = \rho$, $E[w(t_s)^{(3)}] = (3/2)\rho$. В [5] показано, что $E[(w(t_s)^{(3)} - (3/2)\rho)(w(t_s)^{(2)} - \hat{\rho})] = (1/2)\sigma_w^2$. Тогда последовательность измерений дисперсии σ_w^2 определяется следующим образом:

$$y(t_s)^{(w)} = 2\left(w(t_s)^{(3)} - \frac{3}{2}\,\hat{\rho}(t_s\,|\,t_s)\right) \left(w(t_s)^{(2)} - \frac{1}{2}\,\hat{\rho}(t_s\,|\,t_s)\right), \quad s = 3, 4, \dots, m, \tag{27}$$

а оценка постоянной дисперсии σ_w^2 рассчитывается по формуле

$$\hat{\sigma}_w^2(t_s \mid t_s) = \hat{\sigma}_w^2(t_{s-1} \mid t_{s-1}) + \frac{1}{3m} \left(y(t_s)^{(w)} - \hat{\sigma}_w^2(t_{s-1}) \mid t_{s-1} \right) \right), \quad s = \overline{3, m},$$
(28)

с начальным условием $\hat{\sigma}_w^2(t_2 | t_2) = 0$. Последний элемент расчёта в рекуррентном соотношении (28) даёт приближённую оценку дисперсии поведения динамики объекта, т. е. $p_1 \approx \hat{\sigma}_w^2(t_m | t_m) = Q$. В [5] также показано, что $E[(w(t_s)^{(2)} - \hat{\rho})^2] = 2\sigma^2 + \sigma_w^2 = 2R + Q$. Поэтому выражение

$$y(t_s)^{(v)} = \frac{1}{2} \left[(w(t_s)^{(2)} - \hat{q}(t_s \mid t_s))^2 - \hat{\sigma}_w^2(t_s \mid t_s) \right], \quad s = 2, 3, \dots, m,$$
(29)

может рассматриваться как последовательность измерений дисперсии $\sigma^2 = R$, оценка которой при принятом предположении о её постоянстве рассчитывается по рекуррентной формуле

$$\hat{\sigma}^{2}(t_{s} \mid t_{s}) = \hat{\sigma}^{2}(t_{s-1} \mid t_{s-1}) + \frac{1}{m}abs(y(t_{s})^{(v)} - \hat{\sigma}^{2}(t_{s-1} \mid t_{s-1})), \quad s = \overline{2, m},$$
(30)

с начальным условием $\hat{\sigma}^2(t_1 | t_1) = 0$. Последний элемент расчёта в (30) даёт приближённую оценку дисперсии измерительной системы, т. е. $p_2 \approx \hat{\sigma}^2(t_m | t_m) = R$.

Теперь остаётся оценить дисперсии помех начального состояния $P(t_1)$. За дисперсию шума начального состояния возьмём оценку дисперсии шумов динамики объекта, т. е. $P(t_1) = P(t_1 | t_1) \approx Q$.

При этом описанный выше инженерный алгоритм можно применять для каждого $k = \overline{1, n}$ из $\{\tilde{y}_k(t_s) = z_{k,s}, k = \overline{1, n}, s = \overline{1, m}\}$ и найденные оценки дисперсий \hat{p}_1 и \hat{p}_2 усреднять, что позволит получить наиболее достоверные дисперсии, в частности, для неизвестных коэффициентов $p_1 \approx Q$, $P(1) \approx Q$ и $p_2 \approx R$. Вычисленные дисперсии можно использовать при решении задачи оценивания состояния исследуемого объекта на основе уравнений фильтра Калмана, чтобы получить наиболее достоверные фильтрационные температурные оценки поведения состояния исследуемого объекта [1, 2, 5].

На основе вейвлет-преобразований [7] решается задача очищения всех данных измерений от шума, что позволяет осуществлять приближённый расчёт значений оценок коэффициентов a_1, b_1 . Если рассматривать (22) как систему двух уравнений с двумя неизвестными, то на их основе можно получить (n-1) пар оценок \hat{a}, \hat{b} , которые при $s = \overline{1, m-1}$ рассчитываются из следующих соотношений:

$$\hat{a} = \frac{\frac{q_{n-1,s+1} - q_{n-1,s}}{u_{n,s}} - \frac{q_{n-2,s+1} - q_{n-2,s}}{u_{n-1,s}}}{\frac{q_{n-2,s} - 2q_{n-1,s} + q_{n,s}}{u_{n,s}} - \frac{q_{n-3,s} - 2q_{n-2,s} + q_{n-1,s}}{u_{n-1,s}},$$
(31)

$$\hat{b} = \frac{q_{n-2,s+1} - q_{n-2,s}}{u_{n-1,s}} - \hat{a} \left(\frac{q_{n-3,s} - 2q_{n-2,s} + q_{n-1,s}}{u_{n-1,s}} \right).$$
(32)

k	8											
	1	2	3	4	5	6	7	8				
1	21,8629	22,4916	23,6851	24,8308	25,7877	26,2314	26,6846	27,1282				
2	26,4812	27,5005	28,0822	$28,\!6745$	29,4714	29,9521	30,3082	30,7682				
3	30,8254	31,6230	32,3004	32,7901	33,6183	33,8723	34,2014	34,6882				
4	34,6827	35,8499	$36,\!8759$	37,7283	38,2038	38,5674	$38,\!6735$	39,3039				
5	42,6265	42,1634	42,1808	42,2573	42,5021	42,2745	42,7410	43,0953				

Из полученных (n-1) пар оценок можно вычислить усреднённую, наиболее достоверную, пару \bar{a}_1, \bar{b}_1 .

4. Алгоритм численной апробации методики решения задачи идентификации.

Пример. 1. Промоделируем температурные значения при следующих исходных данных стержня: $a = 0,2, b = 0,5, n = 5, m = 8, s = \{1,2,3,4,5,6,7,8\}$ с теплоизолированной боковой поверхностью и тепловым источником $u = \{q(1,1); 1; 1; 1; 1; 1; q(1,5)\}$, с заданными краевыми q(1,1) = 21, q(1,5) = 42 и начальными $X_1 = \{21\ 26\ 30\ 34\ 42\}$ условиями, а также известными значениями дисперсий $p_1 = Q = 0,05, P(1) = Q, p_2 = R = 0,07$. Расчёты для примера проводились с помощью математической системы MATLAB.

Далее решаем задачу идентификации коэффициентов уравнения теплопроводности при заданных входных и выходных значениях распределённого типа, а также краевых и начальных условиях. Расчёты с помощью соотношений (31) и (32) дали следующие коэффициенты уравнения теплопроводности: $\hat{a}_1 = 0.0978$, $\hat{b}_1 = 0.6033$.

Смоделированные значения температур однородного стержня с теплоизолированной боковой поверхностью и тепловым источником $u = \{q(1,1); 1; 1; 1; 1; 1; q(1,5)\}$, с заданными измеренными (с учётом шумов измерений) краевыми q(1,1) = 21,8629, q(1,5) = 42,6265 и начальными $X_1 = \{21,8629,26,4812,30,8254,34,6827,42,6265\}$ условиями соответственно сведены в таблицу.

2. Пара оценок \hat{a} , \hat{b} вместе с исходными входными данными была использована для моделирования выхода измерительной системы и позволила получить суммарное среднеквадратическое отклонение ss = 3,1604.

3. Чтобы повысить достоверность оценок поведения исследуемого объекта, решена задача определения состояния его поведения на основе уравнений фильтра Калмана [2, 5] с учётом шумов динамики ($\hat{p}_1 = Q \approx 0.032$, P(1) = Q) и шумов измерительной системы ($\hat{p}_2 = R \approx 0.074$), рассчитанных по алгоритму из разд. 3.

Затем с использованием фильтрационных оценок поведения объекта была решена обратная задача идентификации коэффициентов. Получена пара оценок $\breve{a} = 0,1149$ и $\breve{b} = 0,5701$, которая также применялась для моделирования выхода измерительной системы. Этот выход использовался для вычисления суммарного среднеквадратического отклонения ss = 2,4578.

Как видим, фильтрационные оценки состояния по схеме Калмана дали возможность получить лучшие оценки коэффициентов и соответственно более достоверные оценки состояний поведения исследуемого объекта.

Заключение. В данной работе поставлена задача идентификации коэффициентов a, b, p_1 и оценивания неизвестных дисперсий Q, R, P(1) для уравнения теплопроводности (3), что позволяет на основе уравнений фильтра Калмана рассчитать температуру стержня в любой точке ($x \in [0, L]$) и в любой момент времени ($t \ge 0$).

Предложенная методика решения задачи идентификации в достаточной степени проста и универсальна. Для уточнения значений коэффициентов уравнения теплопроводности, входящих в (3), имеются и другие возможности, к которым (кроме фильтрации шумов по Калману) можно отнести:

1) уменьшение шага сетки между соседними узлами;

2) применение для внутренних точек более точных формул аппроксимации вида $(\partial q/\partial x)_{k,s} \approx (q_{k+1,s} - q_{k-1,s})/2h;$

3) использование идей планирования динамического эксперимента [4], например можно улучшить точность оценок параметров с помощью повышения информативности выхода измерительной системы, для чего применяют различные подходы к управлению экспериментом [4] (планирование (синтез) входного управляющего сигнала [4, 8, 9], моментов измерений [4] и т. д.).

СПИСОК ЛИТЕРАТУРЫ

- 1. Араманович И. Г., Левин В. И. Уравнения математической физики. М.: Наука, 1969. 287 с.
- 2. Синицын И. Н. Фильтры Калмана и Пугачева: Учеб. пособие. М.: Университетская книга, Логос, 2006. 640 с.
- 3. Абденова Г. А. Структурно-параметрическая идентификация систем с распределенными параметрами с использованием модели типа «вход—состояние—выход» // Науч. вестн. НГТУ. 2006. № 1(38). С. 9–16.
- 4. Горский В. Г., Адлер Ю. П., Талалай А. М. Планирование промышленных экспериментов. Модели динамики. М.: Металлургия, 1978. 112 с.
- 5. Mehra R. Identification and adaptive Kalman filtering // Mechanics. 1971. N 3. P. 34–52.
- 6. Абденова Г. А. Прогнозирование значений уровня временного ряда на основе уравнений фильтра Калмана // Ползуновский вестник. 2010. № 2. С. 4–6.
- 7. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в МАТLAB. М.: ДМК Пресс, 2005. 304 с.
- 8. Абденов А. Ж. Повышение информативности измерений для стохастических динамических систем на основе оптимизации спектральной плотности входного сигнала // Автометрия. 1999. № 1. С. 77–93.
- 9. Абденов А. Ж. Планирование автокорреляционной функции входного сигнала для стохастических непрерывно-дискретных динамических систем // Автометрия. 2005. 41, № 2. С. 81–97.

Поступила в редакцию 17 марта 2015 г.