УДК 681.787 + 535.417

ПЕРЕСТРАИВАЕМЫЙ ВРАЩЕНИЕМ ДВУХЛУЧЕВОЙ ИНТЕРФЕРОМЕТР С НЕПОДВИЖНЫМ ФОТОЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ. Ч. І. ИНТЕРФЕРОМЕТР НА ОСНОВЕ СВЕТОДЕЛИТЕЛЬНОГО КУБИКА

В. Д. Угожаев

Институт автоматики и электрометрии СО РАН, 630090, г. Новосибирск, просп. Академика Коптюга, 1 E-mail: vdu@iae.nsk.su

Предложен двухлучевой интерферометр на основе светоделительного кубика с неподвижным фоточувствительным элементом, предназначенный для создания интерференционных картин с перестраиваемым периодом. Единственным движением, приводящим к изменению периода, является вращение интерферометра относительно источника светового пучка. Наибольшая ширина диапазона перестройки угла схождения близка к 50°, а возможные значения этого угла лежат в интервале от 10 до 180°. Длины плеч интерферометра равны между собой благодаря его симметрии. Отсутствие юстировочных элементов обеспечивает высокую виброустойчивость прибора.

Ключевые слова: двухлучевой интерферометр, светоделительный кубик, неподвижные зеркала, неподвижный фоточувствительный элемент, перестройка угла схождения, голографическая дифракционная решётка, виброустойчивость.

DOI: 10.15372/AUT20160207

Введение. В современной фотонике и микроэлектронике широко используются периодические структуры с различной метрикой и пространственными частотами от единиц до 10^4 мm^{-1} (~ (10^2-10^6) dpi). Для создания таких структур обычно применимы двухлучевые интерферометры, в которых два идентичных пучка (далее парциальные пучки) пересекаются под требуемым углом схождения, соответствующим периоду интерференционной картины (ИК). Типичны два варианта оптических схем — двухзеркальная [1] и трёхзеркальная [2]. В первом варианте парциальные пучки направляются друг к другу светоделительным и плотным зеркалами; во втором такое сведение выполняется двумя плотными зеркалами. В обоих случаях изменение угла схождения производится юстировкой каждого из направляющих зеркал. В трёхзеркальной схеме [2] существует возможность выравнивать длины плеч при любой смене угла схождения. В двухзеркальном варианте [1] разность хода парциальных пучков не устранима в принципе. В итоге каждая переустановка угла схождения сопряжена с выполнением ряда юстировочных и измерительных операций. Кроме того, наличие юстировочных устройств снижает виброустойчивость интерферометра.

В цикле работ [3–5] представлены три варианта исполнения двухлучевого интерферометра, в которых предлагается и реализуется способ вращательной перестройки угла схождения. Два из них допускают предельно широкий диапазон перестройки (от 0 до 180°). Этот способ позволяет избавиться от юстировочных и измерительных процессов при изменении угла схождения, чем существенно упрощается эксплуатация прибора и снижается его чувствительность к вибрациям. Все три варианта помимо общего вращательного движения требуют также хотя бы одного линейного перемещения.

Цель данной работы — анализ характеристик двухлучевого интерферометра с неподвижными направляющими зеркалами (ДИНЗ) [4] и неподвижным фоточувствительным элементом (НФЧЭ), в котором перестройка угла схождения производится путём вращательного движения с исключением любых линейных перемещений. Такая кинематика предельно упрощает эксплуатацию интерферометра. Найдены зависимости диапазона перестройки и диаметра исходного пучка от соотношения геометрических параметров ДИНЗ с НФЧЭ, предназначенного для записи пропускающих голографических дифракционных решёток. Очевидно, что перестройка может выполняться также путём эквивалентного вращения излучателя относительно неподвижного интерферометра.

Геометрическое описание оптической схемы ДИНЗ с НФЧЭ. На рис. 1, *а* представлена оптическая схема исследуемого интерферометра, в которой ход световых пучков отображается их осевыми лучами. Исходный коллимированный пучок 1 направляется в светоделительный кубик (СДК) 3 на его входную поверхность C_1C_4 под углом падения θ на расстоянии Q от ребра C_1 ; плоскость падения перпендикулярна рёбрам C_1-C_4 (далее

Рис. 1. Геометрические характеристики ДИНЗ с НФЧЭ: *а* — оптическая схема; *b* — схема вращательной кинематики интерферометра; *с* — сечение ИК рабочей плоскостью

рабочая плоскость). Знак θ определяется отклонением пучка 1 от нормали к поверхности C_1C_4 в сторону ребра C_1 (знак «-») или в противоположную сторону (знак «+»). Внутри СДК этот пучок разделяется светоделительной поверхностью C_1C_2 на два парциальных пучка: прошедший 2.1 и отражённый 2.2. Они выходят из СДК на одинаковых расстояниях B от ребра C_2 и после отражения от неподвижных зеркал 4.1 и 4.2 пересекаются в точке O под углом схождения 2α на расстоянии L (далее длина схождения) от ребра C_2 . В области взаимного перекрытия парциальных пучков образуется интерференционная картина; в ней на расстоянии \tilde{L} от ребра C_2 помещается НФЧЭ 5; в общем случае $\tilde{L} \neq L$. Зеркала 4.1 и 4.2 размещены симметрично относительно поверхности C_1C_2 и наклонены к ней под углом ξ (на рисунке $\xi > 0$). Расстояние H между ними отсчитывается в плоскости С₃С₄. Зеркала и НФЧЭ образуют совместно с СДК жёсткий оптический блок. Далее расстояния Q, B, L, L, H и диаметр пучка D используются в относительном представлении путём деления на длину A ребра СДК: q, b, l, \tilde{l}, h и d соответственно. Сам интерферометр и парциальные пучки в нём зеркально симметричны относительно поверхности C_1C_2 , поэтому длины плеч точно равны между собой, что является важным свойством предлагаемого способа перестройки. Отсюда следуют минимальные требования к временной когерентности применяемого излучения.

Базовые соотношения между параметрами ДИНЗ с НФЧЭ заимствованы из [4]:

$$\alpha = \theta + 2\xi + 45^{\circ},\tag{1}$$

$$q + b = 1 + \operatorname{tg}\psi,\tag{2}$$

$$b = \frac{(h\cos\xi - \sqrt{2}\sin\xi)[\cos(\theta + \xi) - \sin(\theta + \xi)] - l[\sin(\theta + 2\xi) + \cos(\theta + 2\xi)]}{\sqrt{2}\cos\theta}.$$
 (3)

В (2) ψ — угол преломления; он зависит от показателя преломления n материала СДК:

$$\operatorname{tg}\psi = \operatorname{tg}\left[\operatorname{arcsin}\left(\frac{\sin\theta}{n}\right)\right] = \frac{\sin\theta}{\sqrt{n^2 - \sin^2\theta}} = \frac{\sin(\alpha - 2\xi) - \cos(\alpha - 2\xi)}{\sqrt{2n^2 - 1 + \sin 2(\alpha - 2\xi)}}.$$
(4)

Рис. 2, *а* иллюстрирует требуемую зависимость $q(\theta)$, когда длина схождения остаётся равной расстоянию до НФЧЭ $(l = \tilde{l})$ при изменении угла схождения. Видно, что значение q должно увеличиваться с ростом θ . На рис. 1, *а* видно, что такого изменения q можно достичь, если ось вращения поместить справа от ребра C_2 . В данной работе рассматривается вариант расположения этой оси в плоскости симметрии ДИНЗ. Рис. 1, *b* показывает кинематику вращательного движения пучка 1 вокруг оси Z, перпендикулярной рабочей плоскости и удалённой от ребра C_2 на расстояние T (t = T/A). Для произвольного осевого луча 1, входящего в СДК под углом падения θ на расстоянии Q от ребра C_1 , можно записать относительную длину радиуса

$$r = R/A = (1 + t/\sqrt{2})(\sin\theta + \cos\theta) - q\cos\theta, \tag{5}$$

откуда расстояние q выражается через t:

$$q = \frac{(1+t/\sqrt{2})(\sin\theta + \cos\theta) - r}{\cos\theta}.$$
(6)

Для любого опорного пучка, падающего под углом θ_0 , из (5) определяется длина r_t , соответствующая произвольно выбранному расстоянию t:

$$r_t = (1 + t/\sqrt{2})(\sin\theta_0 + \cos\theta_0) - q_0\cos\theta_0,$$
(7)

Рис. 2. Перестроечные характеристики ДИНЗ с НФЧЭ: а — зависимости расстояния q от угла падения θ при $h = \sqrt{2}$ и $\xi = 0^{\circ}$ (кривые 1–5 соответствуют значениям $\tilde{l} = 5; 2; 1; 0, 5$ и 0,1); b — зависимости $l(\theta)$ в интерферометре с размерами $h = \sqrt{2}, \xi = 10^{\circ}$ и параметрами опорного пучка $\theta_0 = 0^{\circ}$ и $q_0 = 0, 5$ (кривые 1–5 соответствуют значениям t = 0, 5; 0, 75; 0, 95; 1, 25 и 1,5 до оси вращения Z); с — зависимости длины схождения $l(\theta)$ и коэффициента смещения $k_s(\theta)$ ИК в том же интерферометре

где q₀ — расстояние осевого луча (далее опорный луч) до ребра C₁. Из (2) получается

$$b_0 = 1 + \operatorname{tg} \psi_0 - q_0. \tag{8}$$

Здесь tg $\psi_0 = \text{tg } \psi(\theta_0)$, как следует из (4). Подставляя (7) в (6), можно найти расстояние $q(\theta, t)$, которое устанавливается при вращении опорного луча вокруг оси Z:

$$q = \frac{(1+t/\sqrt{2})(\sin\theta + \cos\theta - \sin\theta_0 - \cos\theta_0) + q_0\cos\theta_0}{\cos\theta}.$$
(9)

Соответствующее расстояние b получается из (2) и (9):

$$b = 1 + \operatorname{tg} \psi - \frac{(1 + t/\sqrt{2})(\sin\theta + \cos\theta - \sin\theta_0 - \cos\theta_0) + q_0\cos\theta_0}{\cos\theta}.$$
 (10)

Длина схождения

$$l = \frac{(h\cos\xi - \sqrt{2}\sin\xi)[\cos(\theta + \xi) - \sin(\theta + \xi)] - b\sqrt{2}\cos\theta}{\sin(\theta + 2\xi) + \cos(\theta + 2\xi)},\tag{11}$$

выраженная из (3), является функцией t согласно (10).

Опорный луч воспроизводится при любом t, что следует из (7) и рис. 1, b, поэтому воспроизводится и соответствующая этому лучу длина схождения

$$l_0 = \frac{(h\cos\xi - \sqrt{2}\sin\xi)[\cos(\theta_0 + \xi) - \sin(\theta_0 + \xi)] - b_0\sqrt{2}\cos\theta_0}{\sin(\theta_0 + 2\xi) + \cos(\theta_0 + 2\xi)}.$$
 (12)

Следовательно, все зависимости $l(\theta)$ для разных расстояний t имеют общую точку (l_0, θ_0) . Эту особенность иллюстрирует рис. 2, b. Границы каждой кривой соответствуют расстояниям q = 0 и q = 1 (нижнее и верхнее значения угла θ), некоторые из них имеют максимум $(l = l_{\text{max}} \text{ при } \theta = \theta_{\text{max}})$. Если $\theta_{\text{max}} = \theta_0$, то кривая приблизительно симметрична относительно максимума, что указывает на возможность поддерживать длину схождения на уровне $l \approx l_0 \approx \tilde{l}$ в некотором диапазоне перестройки угла схождения 2α .

Расстояние t_0 , для которого $\theta_{\max} = \theta_0$, можно найти, если взять производную l' от функции $l(\theta)$ (11) и приравнять её к нулю при $t = t_0$, $\theta = \theta_0$ и $b = b_0$ согласно (8). Полученное выражение с учётом производных b' и $(tg \psi)'$ (дифференцируются формулы (10) и (4) соответственно) даёт

$$t_0 = \sqrt{2} \times$$

$$\times \left\{ \frac{\frac{n^2 \cos \theta_0}{\sqrt{(n^2 - \sin^2 \theta_0)^3}} + \frac{\sqrt{2}(h \cos \xi - \sqrt{2} \sin \xi) \cos \xi - b_0(\cos 2\xi - \sin 2\xi)}{\cos \theta_0[\sin(\theta_0 + 2\xi) + \cos(\theta_0 + 2\xi)]} - q_0 \operatorname{tg} \theta_0}{1 - \operatorname{tg} \theta_0} - 1 \right\}.$$
(13)

Поскольку зависимость $l(\theta) \neq \text{const}$, совместить центр симметрии ИК (точка O на рис. 1, a) с НФЧЭ можно либо в одной точке, если $\tilde{l} = l_{\text{max}}$, либо в двух точках, если $\tilde{l} < l_{\text{max}}$. На остальных участках данной зависимости точка O смещена относительно НФЧЭ вдоль плоскости C_1C_2 , что приводит в конечном счёте к снижению контраста ИК, обусловленному неравномерностью распределения интенсивности в парциальных пучках. Поэтому величина такого смещения должна быть ограничена условием допустимого минимума контраста.

На рис. 1, *с* изображено сечение ИК рабочей плоскостью с длиной диагонали *S*, ориентированной вдоль плоскости симметрии C_1C_2 . Её относительная длина $s = S/A = d/\sin \alpha$. Центр *O* сдвинут по отношению к НФЧЭ на расстояние $\Delta l = l - \tilde{l}$, которое можно определить через коэффициент смещения

$$k_s = 2|\Delta l|/s = 2|\Delta l|\sin\alpha/d \le \varepsilon, \tag{14}$$

где $\varepsilon < 1$. Для поддержания высокого контраста ИК нужно, чтобы $\varepsilon \ll 1$.

Основные соотношения для расчёта характеристик ДИНЗ с НФЧЭ. На рис. 2, *c* максимум зависимости $l(\theta)$ (кривая 5) привязан к опорному пучку расстоянием t_0 , которое рассчитывается по (13). На этой кривой отмечены три характерных значения длины схождения: $l_{\max} = l_0$ (прямая 1) согласно (12) и (8), $l_{\min 1}$ (прямая 3) и $l_{\min 2}$ (прямая 4) согласно (11) и (10). Они соответствуют углу падения $\theta_{\max} = \theta_0$ в максимуме, наименьшему θ_1 и наибольшему θ_2 граничным значениям (штриховые линии 6 и 8), причём осевой луч на этих границах смещён от рёбер СДК внутрь входной поверхности C_1C_4 (см. рис. 1, *a*), поскольку диаметр пучка d > 0. На рис. 2, *c* (прямая 2) показано, что расстояние \tilde{l} , определяющее положение НФЧЭ, целесообразно установить в промежутке между значениями $l_{\min 1}$, $l_{\min 2}$, с одной стороны, и l_0 , с другой стороны, чем достигается максимально широкий диапазон перестройки 2α в пределах допуска $k_s \leq \varepsilon$. Поскольку k_s принимает своё наибольшее значение ε при трёх углах падения θ_1 , θ_0 и θ_2 , из (14) можно получить три соответствующие величины смещения:

$$|\Delta l|_i = \varepsilon d/2 \sin \alpha_i,\tag{15}$$

где согласно (1) $\alpha_i = \theta_i + 2\xi + 45^\circ$, i = 0, 1, 2. Зависимость $k_s(\theta)$ (кривая 7), построенная по формуле (14) при условиях $\tilde{l} = 0,1541$ и d = 0,3, показывает, что все промежуточные значения k_s лежат ниже максимумов θ_1 , θ_0 и θ_2 . Если в максимумах $k_s = \varepsilon$, то при выполнении равенств (15) все промежуточные значения $k_s < \varepsilon$.

Рис. 2, c представляет равенства, связывающие между собой длины схождения в трёх характерных точках зависимости $l(\theta)$ через смещения (15):

$$l_0 - |\Delta l|_0 = \tilde{l}; \quad l_{\min 1, 2} + |\Delta l|_{1, 2} = \tilde{l},$$
(16)

где l_0 находится из (12). Равенства (16) преобразуются в два уравнения для определения θ_1 и θ_2 , если подставить \tilde{l} из второго равенства в первое и третье и использовать (15):

$$l_{\min 1,2} + \frac{\varepsilon d_{1,2}}{2} \left(\frac{1}{\sin \alpha_{1,2}} + \frac{1}{\sin \alpha_0} \right) - l_0 = 0, \tag{17}$$

где $\alpha_{1,2}$ находится из (1). В (17) учтено обстоятельство, выявленное при вычислениях, когда при произвольном q_0 значения диаметров на краях разные: $d_1 \neq d_2$. Длины схождения $l_{\min 1}$ и $l_{\min 2}$ можно установить по формулам (11) и (10) при подстановке $t = t_0$ и соответствующих переменных: θ_1 , tg ψ_1 и θ_2 , tg ψ_2 ; значения tg $\psi_{1,2}$ определяются из (4).

Третье уравнение $(d_1 = d_2)$ связывает диаметр d с граничными значениями θ_1 , θ_2 и выводится из условия, что пучок касается ближайшего ребра СДК. Этим задаются расстояния q_1 и q_2 , которые определяют левое и правое крайние положения оси пучка. Можно составить шесть равенств, обусловленных соотношением знаков θ_1 и θ_2 , которые описывают возможные варианты положения пучка 1 на входной поверхности СДК. Из них получаются выражения для d_1 и d_2 , позволяющие записать пять вариантов искомого уравнения, устанавливающего взаимосвязь данных углов. В предлагаемой работе эти уравнения не приводятся из соображений краткости.

Таким образом, в системе из трёх балансировочных уравнений есть четыре переменные: θ_0 , q_0 , θ_1 и θ_2 , одна из которых является задаваемым параметром. В этом качестве удобно использовать переменную θ_0 . В некоторых случаях, например при $\theta_1 = 0^{\circ}$ или $\theta_2 = 0^{\circ}$, именно θ_1 или θ_2 целесообразно выбрать задаваемым параметром.

Рис. 3. Характеристики ДИНЗ с НФЧЭ в зависимости от θ_0 при $\xi = 10^\circ$, трёх значениях $h = \sqrt{2}, 2, 3$ и $\varepsilon = 0,1$: a — граничные значения углов α_1, α_2 и полуширина диапазона перестройки $\Delta \alpha$; b — расстояние q_0 и оптимальный диаметр d_0 ; c — расстояние t_0 до оси вращения Z

Результаты расчёта характеристик ДИНЗ с НФЧЭ. Рис. 3 представляет результаты вычислений, выполненных для нескольких значений расстояния h между неподвижными зеркалами при угле наклона $\xi = 10^{\circ}$ и показателе преломления материала СДК n = 1,52.

На рис. 3, *а* отображены граничные значения половинных углов схождения α_1 (кривые 7, 6, 5) и α_2 (кривые 1–3), а также полуширина диапазона перестройки угла схождения $\Delta \alpha = \alpha_2 - \alpha_1$ (кривые 8–10). Видно, что: 1) граничные углы α_1 и α_2 почти симметричны относительно опорного угла $\alpha_0 = \theta_0 + 65^\circ$ (кривая 4); 2) диапазон перестройки сужается с ростом h, но одновременно достигаются более высокие значения угла α ; 3) полуширина диапазона перестройки имеет слабо выраженный максимум в области значений $\theta_0 \approx 0^\circ$, её наибольшее значение $\Delta \alpha = 24,6^\circ$ ($\alpha_1 = 52,9^\circ, \alpha_2 = 77,5^\circ$) наблюдается при $h = \sqrt{2}$ и $\theta_0 = -0,58^\circ$.

На рис. 3, *b* приведены зависимости $q_0(\theta_0)$ и $d_0(\theta_0)$. Характерно, что кривые имеют изломы в точках, которые принадлежат переходу через нуль граничных значений θ_2 или θ_1 по мере роста θ_0 . Почти горизонтальные отрезки кривых 1–3 соответствуют значениям

Puc. 4. Совмещение трёх поддиапазонов перестройки α при $d_0 = 0,25$. Над горизонтальными прямыми приведены значения угла наклона ξ неподвижных зеркал

 $\theta_0 \approx -7...7^\circ$, когда $\theta_1 < 0^\circ$, а $\theta_2 > 0^\circ$. Они близки друг к другу — все лежат в интервале $q_0 = 0,507-0,511$. Это свойство можно использовать для настройки ДИНЗ с НФЧЭ и его эксплуатации.

Кривые 3, 2 и 1 зависимости $t_0(\theta_0)$ (рис. 3, c) соответствуют значениям $h = \sqrt{2}$, 2 и 3. Они имеют минимум, который располагается вблизи максимумов зависимости $d_0(\theta_0)$ на рис. 3, b. Таким образом, работа с широкими пучками оптимальна и с точки зрения минимизации габаритов прибора. На рис. 3, c приведён фрагмент кривой 3 ($h = \sqrt{2}$), на котором виден излом при $\theta_2 = 0^\circ$ ($\theta_0 \approx -12.5^\circ$). Кривые 4 и 5 (см. рис. 3, b) показывают, что диаметр пучка $d_0 \ge 0.25$ в области его максимальных значений.

На рис. 4 изображены три поддиапазона перестройки угла α для значений $\xi = -10$, 0, 10° и $h = \sqrt{2}$ при диаметре пучка $d_0 = 0.25$. Они частично перекрываются и в сумме заполняют интервал значений угла $\alpha = 24,1-74,0^{\circ}$. Каждому углу ξ соответствует своё положение НФЧЭ ($\tilde{l} = 1,24;0,67;0,30$) и своё положение оси поворота ($t_0 = 2,90;1,63;0,93$). По-видимому, указанный интервал можно расширить, если подобрать значения d и ξ таким образом, чтобы поддиапазоны соединялись без перекрытия. Например, путём экстра-поляции зависимости $\alpha_{1,2}(\xi)$ можно найти ориентировочные значения границ суммарного диапазона перестройки $\alpha = 21,6-82,5^{\circ}$, что на 11° шире вышеприведённого интервала.

Заключение. В данной работе предложен двухлучевой интерферометр, в котором изменение периода голографической решётки $\Lambda = \lambda/2\sin\alpha$ (λ — длина волны записывающего излучения) выполняется единственным движением — вращением интерферометра вокруг оси, перпендикулярной плоскости падения коллимированного светового пучка на входную грань СДК. В оптимальном режиме ширина диапазона перестройки угла схождения 2α может составлять около 50° при диаметре пучка $D \approx A/4$. Интервал данного диапазона регулируется изменением угла ξ наклона зеркал: при увеличении ξ от -10 до 10° диапазон угла 2α сдвигается от $48,2-79,1^{\circ}$ до $99,2-148,0^{\circ}$. В этом режиме расстояния от СДК до НФЧЭ и от СДК до оси поворота близки к своим минимальным значениям, что позволяет создать компактный прибор. Можно, например, достичь непрерывного диапазона перестройки от 48,2 до 148,0°, предусмотрев три фиксированные позиции зеркал: $\xi = -10,0$ и 10°, а также соответствующие им фиксированные положения НФЧЭ и оси поворота. Габариты такого совмещённого прибора вписываются в площадку $4.5A \times 2.5A$ (при A = 20 мм размеры составляют 90×50 мм); диаметр пучка $D \approx 5$ мм. Подбор значений угла ξ и диаметра D позволяет не только расширить суммарный диапазон, но и исключить перекрытие поддиапазонов. Предложенный интерферометр может найти широкое применение благодаря своей компактности, высокой виброустойчивости, простоте эксплуатации; некоторые примеры приведены в [3, 4].

Автор выражает благодарность канд. физ.-мат. наук С. Л. Микерину за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

- Pat. DE1285763 (B). Verfahren zur Herstellung optischer Beugungsgitter /J. Heidenhain, H. Burkhardt, H. Kraus. Publ. 1968.
- 2. Шелковников В. В., Васильев Е. В., Герасимова Т. Н. и др. Динамика импульсной записи голографических дифракционных решеток в фотополимерном материале // Оптика и спектроскопия. 2005. 99, № 5. С. 838–847.
- 3. Микерин С. Л., Угожаев В. Д. Простой двухлучевой интерферометр на основе светоделительного кубика // Оптика и спектроскопия. 2011. **111**, № 6. С. 1019–1025.
- 4. Микерин С. Л., Угожаев В. Д. Перестраиваемый голографический интерферометр с неподвижными зеркалами // Автометрия. 2012. 48, № 4. С. 20–32.
- 5. Микерин С. Л., Угожаев В. Д. Перестраиваемый голографический интерферометр со светоделительным блоком и неподвижными зеркалами // Автометрия. 2014. **50**, № 2. С. 110–120.

Поступила в редакцию 12 мая 2015 г.