Dynamical Cooper pairing in non-equilibrium electron-phonon systems

Eugene DemlerHarvard University

Collaborators: Mehrtash Babadi (Caltech/Broad), Michael Knap (TU Munich), Ivar Martin (Argonne), Gil Refael (Caltech)

Harvard-MIT

\$\$ NSF DMR, Simons Foundation, MURI QUANTUM MATTER, ITS ETH

Ultracold atoms and photoinduced superconducitivty

Also expts by Sengstock, Arimondo, Oberthaler, Bloch, Chin, Spielman, Hemmerich, Esslinger, Ketterle, Greiner, Zwierlein Experiments by Sengstock, Esslinger, Arlt, Jin, Pfau, Oberthaler, Bloch, Killian, ...

New tool: Floquet engineering of interactions

Introduction: experimental evidence of photo-enhanced superconductivity in electron-phonon superconductor K_3C_{60}

Other experiments: optical control of Mott insulators, charge and spin density wave states, superconductivity in high Tc cuprates

Motivation: photoinduced superconducitivty in K3C60

Equilibrium: T=25K (red) and T= 10 K (blue)

M. Mitrano et al., Nature 530, 461 (2016)

Response of photoexcited system

Motivation

Light-induced superconductivity in K_3C_{60}

Induced spectral weight loss vs. pump frequency (const. fluence)

Resonance with phonons makes this effect very different from Wyatt-Dayem effect

Outline

Physical picture: enhanced electron-phonon interaction in systems with driven phonons

Floquet-Migdal-Eliashberg analysis

Simpler analysis: polaron transformation

Conclusions

How to increase electron-phonon interaction and enhance superconductivity, CDW, ...

This talk: focus on superconductivity

Electron-phonon interactions in systems with driven phonons

$$\mathcal{H} = \sum_{q} \left(\frac{P_q^2}{2M} + \frac{M\omega_q^2}{2} Q_q^2 \right) + \mathcal{H}_{\text{drive}}(t)$$

Example: parametric drive of phonons

$$\mathcal{H} = \sum_{q} \left(\frac{P_q^2}{2M} + \frac{M\Omega_q^2(t)}{2} Q_q^2 \right) \qquad \qquad \Omega_q^2(t) = \omega_q^2 \left(1 + 2\alpha \cos(2\Omega_{\rm drv}t) \right)$$

Effective electron-electron interaction assuming slow electron dynamics

$$\mathcal{H}_{\text{eff}} = U(t) \,\hat{\rho}_{\text{el}}(t) \,\hat{\rho}_{\text{el}}(t)$$
$$U(t) = \frac{|\tilde{g}_{\mathbf{q}}|^2}{\hbar} \int_{-\infty}^t \mathrm{d}t' \,\mathcal{D}_{QQ}^R(t,t')$$

$$\mathcal{D}_{QQ}^{R}(t,t') = -i\theta(t-t')\langle \hat{Q}(t)\,\hat{Q}(t') - \hat{Q}(t')\,\hat{Q}(t)\rangle$$

Electron-phonon interactions in systems with driven phonons

Compare to

$$\begin{aligned} \mathcal{H}' &= \mathcal{H} - \phi \, \hat{Q} \\ \langle \hat{Q} \rangle &= \chi \, \phi \quad \text{Fluctuation-dissipation theorem} \quad \chi = \langle \hat{Q} \, \hat{Q} \rangle \\ \Delta E &= -\frac{\chi \phi^2}{2} \end{aligned}$$

From electron-phonon coupling to effective electron-electron interaction

$$\mathcal{H}_{\text{el-phon}} = \sum_{k q \sigma} g_q Q_q c^{\dagger}_{k-q\sigma} c_{k\sigma}$$
$$\mathcal{H}_{\text{eff}} = U(t) \,\hat{\rho}_{\text{el}}(t) \,\hat{\rho}_{\text{el}}(t)$$
$$U(t) = \frac{|\tilde{g}_{\mathbf{q}}|^2}{\hbar} \int_{-\infty}^t dt' \, \mathcal{D}_{QQ}^R(t,t')$$

$$\mathcal{D}_{QQ}^{R}(t,t') = -i\theta(t-t')\langle \hat{Q}(t)\,\hat{Q}(t') - \hat{Q}(t')\,\hat{Q}(t)\rangle$$

Phonon response function

 \mathcal{H}

Parametric drive

Harmonic oscillator equations of motion

From linearity of equations

Response function

$$\begin{aligned} \mathcal{H} &= \sum_{q} \left(\frac{P_q^2}{2M} + \frac{M\Omega_q^2(t)}{2} Q_q^2 \right) \\ &\quad \frac{\mathrm{d}\hat{Q}(t)}{\mathrm{d}t} = \frac{\hat{P}(t)}{M} \\ &\quad \frac{\mathrm{d}\hat{P}(t)}{\mathrm{d}t} = -M\omega_q^2 \big[1 + 2\alpha\cos(2\Omega_{\mathrm{drv}}t) \big] \hat{Q}(t) \\ \\ &\text{ns} \qquad \hat{Q}(t) = \mathfrak{M}_{QQ}(t,t') \, \hat{Q}(t') - \mathfrak{M}_{QP}(t,t') \, \frac{\hat{P}(t')}{M\Omega_{\mathrm{drv}}} \\ &\quad \mathcal{D}_{QQ}^R(t,t') = -i\,\theta(t-t') \langle [\hat{Q}(t'),\hat{P}(t')] \rangle \, \times \frac{-\mathfrak{M}_{QP}(t,t')}{M\Omega_{\mathrm{drv}}} \\ &\quad = -\frac{\hbar}{M\Omega_{\mathrm{drv}}} \, \theta(t-t') \, \mathfrak{M}_{QP}(t,t') \end{aligned}$$

Response function does not depend on the initial state of phonons. It is determined by the Hamiltonian only. It is enhanced near parametric resonance.

Electron-phonon interactions in systems with driven phonons

Parametrically driven phonons $\Omega_q^2(t) = \omega_q^2 \left(1 + 2\alpha \cos(2\Omega_{\rm drv}t)\right)$

$$\frac{U(t)}{U_{\rm eq}} = 1 - \frac{2\alpha\,\omega_{\mathbf{q}}^2\,\cos(2\Omega_{\rm drv}t)}{\omega_{\mathbf{q}}^2 - 4\Omega_{\rm drv}^2} + \frac{2\alpha^2\,\omega_{\mathbf{q}}^2\left[\omega_{\mathbf{q}}^2 - 16\Omega_{\rm drv}^2 + \omega_{\mathbf{q}}^2\cos(4\Omega_{\rm drv}t)\right]}{(\omega_{\mathbf{q}}^2 - 16\Omega_{\rm drv}^2)(\omega_{\mathbf{q}}^2 - 4\Omega_{\rm drv}^2)} + \mathcal{O}(\alpha^4)$$

Effective interaction: time average and variance. α = 0.2

Strong enhancement near resonance. Large response function near "instability"

Exponential dependence of Tc: gain on increase in U is larger than suppression due to decrease Simple argument II

How to increase electron-phonon interaction and enhance superconductivity, CDW, ...

Can one gain from non-equilibrium state of phonons?

interaction via phonon emission

 $-\frac{g^2\left(1+n\right)}{\epsilon_p+\omega_{k-p}-\epsilon_k} \approx -\frac{g^2\left(1+n\right)}{\omega_{\rm ph}}$

interaction via phonon absorption

$$-\frac{g^2 n}{\epsilon_p - \omega_{p-k} - \epsilon_k} \approx +\frac{g^2 n}{\omega_{\rm ph}}$$

Effective interaction

$$V_{
m eff} = -rac{g^2}{\omega_{
m ph}}$$

This is the usual argument that real photons do not help to increase effective pairing strength

Driven phonon system

$$\mathcal{H} = \frac{P^2}{2} + \frac{Q^2}{2} + A\cos 2\omega_{\rm dr}t \times Q^2$$

Exact solution is available.

Consider a simplified version that has essential physics

$$\mathcal{H} = \omega_{\rm ph} b^{\dagger} b + (A e^{-2i\omega_{\rm dr} t} b^{\dagger} b^{\dagger} + \text{h.c.})$$

Transform to the rotating frame

$$\tilde{\mathcal{H}} = (\omega_{\rm ph} - \omega_{\rm dr}) b^{\dagger} b + (A b^{\dagger} b^{\dagger} + {\rm c.c.})$$

This looks like a Bogoliubov Hamiltonian

Electron-phonon interaction in a driven phonon system

$$\tilde{\mathcal{H}}_{\rm phon\,dr} = \tilde{\omega}_{\rm ph} \, b^{\dagger} \, b \, + \, (A \, b^{\dagger} \, b^{\dagger} \, + \, {\rm c.c.})$$

Bogoliubov transformation diagonalizes the Hamiltonian of driven phonons

$$e^{S} \tilde{\mathcal{H}}_{\mathrm{phon\,dr}} e^{-S} = \tilde{\omega}_{\mathrm{ph}} b^{\dagger} b$$

$$e^S \, b \, e^{-S} \, = \, \cosh \, \xi \, b \, + \, \sinh \, \xi \, b^\dagger$$

Bogoliubov transformation amplifies electron-phonon interaction.

$$\mathcal{H}_{
m el-phon} \,=\, g\,\sum\, c^{\dagger}_{k+q}\, c_k\,(\,b_q\,+\,b^{\dagger}_{-q}\,)$$

Analogous effect has been pointed out in opto-mechanics: Lemonde et al., arXiv:1509.09238 (2015)

Photo-induced superconductivity Floquet-Keldysh-Migdal-Eliashberg approach

M. Babadi, M. Knap, G. Refael, I. Martin, E. Demler

Driven electron-phonon system

This talk: focus on dynamical effects

Microscopic model

$$\begin{aligned} \mathcal{L}[\varphi, \Psi](t) &= \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \left(i \partial_{t} \mathbb{I} - \xi_{\mathbf{k}} \hat{\sigma}_{3} \right) \Psi_{\mathbf{k}} - \frac{1}{2} \sum_{\mathbf{q}} \frac{1}{2\omega_{\mathbf{q}}} \varphi_{\mathbf{q}} \left(\partial_{t}^{2} + \omega_{\mathbf{q}}^{2} \right) \varphi_{-\mathbf{q}} \\ &- \sum_{j \in \text{lattice}} \mathcal{V}^{\text{ph}}(\varphi_{j}) - \frac{1}{\sqrt{N}} \sum_{\mathbf{k}, \mathbf{k}'} g_{\mathbf{k}, \mathbf{k}'} \varphi_{\mathbf{k} - \mathbf{k}'} \Psi_{\mathbf{k}'}^{\dagger} \hat{\sigma}_{3} \Psi_{\mathbf{k}} + \frac{\Lambda}{2} |F(t)|^{2} \sum_{j \in \text{lattice}} \varphi_{j} \end{aligned}$$

Phonons are driven only at q=0: e.g. $\Lambda \varphi_{\mathrm{IR},q=0}^2(t) \varphi_{q=0}$.

This analysis can be applied to the IR modes themselves, if they couple to electrons We assume phonon-nonlinearities given by κ_3 and κ_4 .

$$\mathcal{V}^{\mathrm{ph}}(\varphi) = -\frac{\kappa_3}{3!} \, \varphi^3 - \frac{\kappa_4}{4!} \, \varphi^4$$

We assume finite small dissipation γ_0 for phonons at q=0 due to other modes. Additional dissipation is generated by electrons

Phonon dynamics

Equations of motion for phonons: coherent part and fluctuations

$$\begin{split} \frac{1}{2\omega_0} \left(\partial_t^2 + \omega_0^2 + \gamma_0 \partial_t\right) \varphi(t) &- \frac{\kappa_4}{6} \varphi^3(t) - \frac{\kappa_3}{2} \varphi^2(t) - \frac{\kappa_4}{2} \chi(t) \varphi(t) = \frac{\Lambda}{2} |F(t)|^2 + \frac{\kappa_3}{2} \chi(t) \\ \chi(t) &\equiv \frac{1}{N} \sum_{\mathbf{q}} i \mathcal{D}_{\mathbf{q}}(t, t) \quad \text{Force from} \\ \text{finite q phonons} \\ - \frac{1}{2\omega_{\mathbf{q}}} \left[\partial_{t_1}^2 + \omega_{\mathbf{q}}^2\right] \mathcal{D}_{\mathbf{q}}(t_1, t_2) &= \delta_{\mathcal{C}}(t_1, t_2) + V(t_1) \mathcal{D}_{\mathbf{q}}(t_1, t_2) + \int_{\mathcal{C}} \mathrm{d}\tau \, \Pi_{\mathbf{q}}(t_1, \tau) \, \mathcal{D}_{\mathbf{q}}(\tau, t_2) \\ V(t) &\equiv -\frac{\kappa_4}{2} \, \chi(t) - \frac{\kappa_4}{2} \, \varphi^2(t) - \kappa_3 \, \varphi(t) \\ & \text{Drive from} \\ q = 0 \, \text{phonon} \end{split} \qquad \Pi_{\mathbf{q}}(t_1, t_2) &= \frac{1}{N} \sum_{\mathbf{k}} |g_{\mathbf{k}, \mathbf{k} + \mathbf{q}}|^2 \, \text{tr} \left[\hat{\mathcal{G}}_{\mathbf{k} + \mathbf{q}}(t_1, t_2) \, \hat{\sigma}_3 \, \hat{\mathcal{G}}_{\mathbf{k}}(t_2, t_1) \, \hat{\sigma}_3\right] \\ & \text{Force from electrons} \\ & \text{including damping} \end{split}$$

and frequency renormalization

q=0 phonon

Floquet-Wigner representation

Evolution of phonons

Coherent amplitude at q=0

Ramped-up external drive from with Amax=0.75

Propagators for finite q

Note the red shift in the spectrum of phonons: contributes to SC enhancement

The real time Migdal-Eliashberg theory

We want to compare enhancement of electron-phonon interaction with shortening of electron lifetime

The real time Migdal-Eliashberg theory

No superconductivity yet

$$\hat{\Sigma}_{\mathbf{k}}(t,t') = \frac{i}{N} \sum_{\mathbf{k}'} \hat{\sigma}_3 \,\hat{\mathcal{G}}_{\mathbf{k}'}(t,t') \,\hat{\sigma}_3 \,|g_{\mathbf{k}\mathbf{k}'}|^2 \,D_{\mathbf{k}-\mathbf{k}'}(t,t')$$

Renormalization of electron energy, quasiparticle weight, lifetime

 $\begin{array}{ll} \text{spectral/Keldysh decomposition} \\ i\hat{\mathcal{G}}_{\mathbf{k}}^{>}(\omega,T) = \frac{1}{2} \begin{bmatrix} i\hat{\mathcal{G}}^{K}(\omega,T) + \hat{\mathsf{A}}(\omega,T) \end{bmatrix} \\ i\hat{\mathcal{G}}_{\mathbf{k}}^{<}(\omega,T) = \frac{1}{2} \begin{bmatrix} i\hat{\mathcal{G}}^{K}(\omega,T) - \hat{\mathsf{A}}(\omega,T) \end{bmatrix} \\ \end{array} \begin{array}{ll} \text{FSA} & \hat{\Sigma}_{\mathbf{k}}(\omega,T) \rightarrow \hat{\Sigma}(\omega,T) \equiv \frac{1}{N\nu(0)} \sum_{\mathbf{k}} \hat{\Sigma}_{\mathbf{k}}(\omega,T) \, \delta(\xi_{\mathbf{k}}) \\ \text{deep Migdal} & E_{F}/\omega_{0} \rightarrow \infty \\ \text{constant EDOS} & \nu(\varepsilon) \rightarrow \nu(0) \end{array}$

$$\hat{\Sigma}^{R}(\omega,T) = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega'}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}\nu}{\omega - \omega' - \nu + i0^{+}} \left\{ iF^{K}(\nu,T)\,\check{\mathsf{A}}(\omega',T) + F^{\rho}(\nu,T)\,i\check{\mathcal{G}}^{K}(\omega',T) \right\},$$
$$i\hat{\Sigma}^{K}(\omega,T) = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega'}{2\pi} \int_{-\infty}^{+\infty} \mathrm{d}\nu\,(2\pi)\delta(\omega - \omega' - \nu) \left\{ iF^{K}(\nu,T)\,i\check{\mathcal{G}}^{K}(\omega',T) + F^{\rho}(\nu,T)\,\check{\mathsf{A}}(\omega',T) \right\}$$

 $\begin{array}{ll} \text{spectral Eliashberg} & F_{\xi,\xi'}^{\rho}(\nu,T) \equiv \frac{\nu(0)}{\nu(\xi)\,\nu(\xi')} \frac{1}{N^2} \sum_{\mathbf{k},\mathbf{k}'} |g_{\mathbf{k}\mathbf{k}'}|^2 \, \frac{1}{2\pi} \, \rho_{\mathbf{k}-\mathbf{k}'}(\nu,T) \, \delta(\xi_{\mathbf{k}}-\xi) \, \delta(\xi_{\mathbf{k}'}-\xi'), \\ \text{Keldysh Eliashberg} & i F_{\xi,\xi'}^{K}(\nu,T) \equiv \frac{\nu(0)}{\nu(\xi)\,\nu(\xi')} \frac{1}{N^2} \sum_{\mathbf{k},\mathbf{k}'} |g_{\mathbf{k}\mathbf{k}'}|^2 \, \frac{1}{2\pi} \, i D_{\mathbf{k}-\mathbf{k}'}^{K}(\nu,T) \, \delta(\xi_{\mathbf{k}}-\xi) \, \delta(\xi_{\mathbf{k}'}-\xi'). \end{array}$

The real time Migdal-Eliashberg theory

Predictions for ARPES

Onset of pairing in non-equilibrium Floquet system

retarded interaction

Introduce off-diagonal component of self-energy. Require self-consistency.

- 1. Calculate the Q-matrix— $(2\omega - m\Omega) \,\delta \mathcal{F}_{n,m}^{R} = -2\pi i \,\phi_{n,m} + \sum_{n'=-N_{D}}^{N_{D}} \left(\Sigma_{n',m-n+n'}^{R} \,\delta \mathcal{F}_{n-n',m+n'}^{R} + \Sigma_{n',m+n-n'}^{R} \,\delta \mathcal{F}_{n-n',m-n'}^{R} \right)$ $\delta \mathcal{F}_{n,m}^{R}(\omega) = \sum_{n',m'} \mathbf{Q}_{n',m'}^{n,m}(\omega) \,\phi_{n',m'}(\omega)$
- 2. Solve the functional eigenvalue equation-

$$\Delta_{n}(\omega) = \frac{i\omega}{2\pi} \sum_{n'=-N_{\phi}}^{N_{\phi}} \sum_{n''=-N_{D}}^{N_{D}} \sum_{m'} \left\{ \mathsf{Q}_{n',m'}^{n,0}(\omega) \int_{0}^{+\infty} \frac{\mathrm{d}\omega'}{\omega'} K_{n''}(\omega - m'\Omega/2, \omega') \Delta_{n'-n''}(\omega') \right\}$$

dynamical self-energy effects (scattering, qp renormalization)
$$- \left[\mathsf{Q}_{n',m'}^{-n,0}(\omega) \right]^{*} \int_{0}^{+\infty} \frac{\mathrm{d}\omega'}{\omega'} K_{n''}^{*}(\omega - m'\Omega/2, \omega') \Delta_{n'-n''}(\omega') \right]$$

Compare to simple BCS

$$\Delta = -V\nu(0)\int d\xi \frac{\Delta}{|\xi|}$$

$$V = -\frac{g^2}{\omega_{\rm ph}}$$

Pairing instability in a driven electron-phonon system

Photo-induced superconductivity approach based on polaron transformation

M. Babadi, M. Knap, G. Refael, I. Martin, E. Demler

Phys. Rev. B 94, 214504 (2016)

Electron-phonon system in equilibrium: Lang-Firsov transformation

$$\hat{H}_{\text{el-ph}} = -J_0 \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_k \omega_k b_k^{\dagger} b_k + \sum_{ik\sigma} \frac{\gamma_k e^{ikr_i}}{\sqrt{V}} (b_k + b_{-k}^{\dagger}) n_{i\sigma}$$

Apply unitary transformation $S = -\frac{1}{\sqrt{V}} \sum_{qj\sigma} \frac{\gamma_q}{\omega_q} e^{iqr_j} (b_q - b_q^{\dagger}) n_{j\sigma}$

$$e^{S} \mathcal{H}_{\rm el-ph} e^{-S} = -\sum_{ij\sigma} J_{ij} c^{\dagger}_{i\sigma} c_{j\sigma} + \sum_{ij\sigma\sigma'} U_{ij} n_{i\sigma} n_{j\sigma'} + \hat{H}_{\rm ph}$$

$$J_{ij} = J_0 e^{-\frac{1}{\sqrt{V}} \sum_k \frac{\gamma_k}{\omega_k} (e^{ikr_i} - e^{ikr_j})(b_k - b_{-k}^{\dagger})}$$
polaron dressing of electron tunneling

$U_{ij} = -\frac{1}{V} \sum_{k} e^{-ik(r_j - r_i)} \frac{\gamma_k^2}{\omega_k}$	phonon mediated
	attraction between
	electrons

Typical approach without drive: average over phonon equilbrium

Electron-phonon system out of equilibrium: LF transformation

$$\begin{split} \hat{H} &= -\sum_{ij\sigma} J_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{ij\sigma\sigma'} U_{ij} n_{i\sigma} n_{j\sigma'} + \hat{H}_{\rm ph} \\ J_{ij} &= J_0 e^{-\frac{1}{\sqrt{V}} \sum_k \frac{\gamma_k}{\omega_k} (e^{ikr_i} - e^{ikr_j}) (b_k - b_{-k}^{\dagger})} \quad \text{polaron dressing} \\ U_{ij} &= -\frac{1}{V} \sum_k e^{-ik(r_j - r_i)} \frac{\gamma_k^2}{\omega_k} \quad \text{phonon mediated} \\ \text{attraction between} \\ \text{electrons} \end{split}$$

$$\hat{H}_{\rm ph} = \hat{H}_{\rm ph,0} + \hat{H}_{\rm drv}$$
$$\hat{H}_{\rm drv} = A_k \omega_k^2 \cos \Omega t \ Q_k^{\rm R} Q_{-k}^{\rm R}$$

Simplest approach: average J_{ij} over a driven state of phonons

$$\langle J_{ij}(t) \rangle = J_{ij}^0 + J_{ij}^1 \cos 2\Omega t + \dots$$

Floquet BCS type Hamiltonian

$$\mathcal{H}(t) = -J_{\rm eq} e^{-\zeta} (1 - A\cos 2\Omega t) \sum c_{i\sigma}^{\dagger} c_{j\sigma} + \sum U_{ij} n_i n_j$$

Move time dependence into interaction using the fact that modulation of the Hamiltonian as a whole has no effect

$$\tilde{H}(t) = J_{\rm eq} e^{-\zeta} \sum_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} - U(1 + \mathcal{A}\cos 2\Omega t) \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Solve Copper-pair instability problem

$$\frac{d}{dt} \langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle = 2i(\epsilon_k - \mu) \langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle - i \frac{U(1 + \mathcal{A}\cos 2\Omega t)}{V} \sum_q \langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle (n_{q\uparrow} + n_{q\downarrow}) - iU(1 + \mathcal{A}\cos 2\Omega t)(1 - 2n_k) \frac{1}{V} \sum_q \langle c_{q\uparrow}^{\dagger} c_{-q\downarrow}^{\dagger} \rangle$$

Appearance of complex eigenvalues signals instability

Need to include pair-breaking scattering of electrons due to non-equilibrium phonon state

Floquet Fermi's golden rule

Photoexcited phonons increase scattering of electrons which gives rise to pair-breaking

$$\frac{1}{\tau_{\rm ph}} = \frac{\pi}{2V} \sum_{qn} |\mathcal{F}_{qk_F}|^2 |\bar{\alpha}_{qn}|^2 \{ (1 - n_{k_F - q}) \delta(2n\Omega - E_{k_F - q} - \omega) \}$$

Analysis of instabilities in Floquet BCS type Hamiltonian

Solve Copper instability problem with pair-breaking processes

$$\frac{d}{dt} \langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle = 2i(\epsilon_k + i/\tau) - \mu) \langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle - i \frac{U(1 + \mathcal{A}\cos 2\Omega t)}{V} \sum_q \langle c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \rangle (n_{q\uparrow} + n_{q\downarrow}) - iU(1 + \mathcal{A}\cos 2\Omega t)(1 - 2n_k) \frac{1}{V} \sum_q \langle c_{q\uparrow}^{\dagger} c_{-q\downarrow}^{\dagger} \rangle$$

Appearance of complex eigenvalues signals instability

Pairing instability in a driven electron-phonon system $\hat{H}_{\text{el-ph}} = -J_0 \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_k \omega_k b_k^{\dagger} b_k + \sum_{ik\sigma} \frac{\gamma_k e^{ikr_i}}{\sqrt{V}} (b_k + b_{-k}^{\dagger}) n_{i\sigma}$

$$\hat{H}_{\rm drv} ~=~ A_k \omega_k^2 \cos \Omega t ~ Q_k^{\rm R} Q_{-k}^{\rm R}$$

Conclusions

External drive leads to enhancement of electronphonon interaction. It can be understood as parametric amplification or result of a squeezed state of phonons. This leads to an increase in the effective BCS coupling constant

This also results in additional scattering of electrons that leads to pair-breaking

We find that increase in BCS coupling can dominate and find possible increase of instability temperature by 150%. Floquet aspects are crucial.