ТАЕОРИЯ СИСТЕМ ВОСПРИЯТИЯ
И ОБРАБОТКИ ИЗМЕРИТЕЛЬНОЙ ИНФОРМАЦИИ

М. В. САБЕНКОВ
(Москва)

СТАТИСТИЧЕСКИЙ КРИТЕРИЙ
ДЛЯ ПРОВЕРКИ СТАЦИОНАРНОСТИ
СЛУЧАЙНОЙ ВРЕМЕННОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Решение многих задач, связанных с изучением случайных времен-ных последовательностей \(X_i = (x_{ij}, x_{2j}, \ldots, x_{Nj}) \), может быть значи-
tельно упрощено, если последовательности \(X_i \) стационарны. С такими за-
даками приходится, в частности, сталкиваться при создании автоматиче-
ских систем контроля (АСК) параметров технических изделий в
процессе эксплуатации. Целесообразно предусмотреть в создаваемом
автомате возможность расчета прогноза изменения параметров техниче-
ского изделия на основе получающихся данных об их контроле.

Вычислительное устройство АСК обычно позволяет делать в отво-
димое для контроля время только простые математические расчеты, на-
пример сложение результатов измерения параметров с некоторыми ве-
сами. Таким образом, в АСК реально может быть осуществлен только
линейный прогноз вида

\[
\hat{x}_{ij} = \sum_{\nu=1}^{i} \beta_{\nu} x_{i-\nu,j}
\]

(1)

Подбором коэффициентов \(\beta_{\nu} \) можно сделать прогноз с помощью ли-
нейной формы (1) оптимальным (в среднеквадратическом), если случай-
ные результаты измерений параметра \(x \) образуют гауссовскую последо-
вательность. Для этого необходимо провести громоздкие расчеты на
универсальной ЦВМ, используя в качестве исходных данных вид кор-
реляционной функции \(R(\rho) \) случайной последовательности или резуль-
таты предварительного сбора сведений об изменении контролируемого
параметра \(x \) в процессе эксплуатации.

Коэффициенты \(\beta_{\nu} \) в общем случае будут зависеть от момента кон-
троля \(i \), т. е. в памяти АСК необходимо держать разные наборы весов
\(\beta_{\nu} \) и вызывать их для расчета прогноза в зависимости от наработки
контролируемого технического изделия. Однако если прогнозируемая
последовательность стационарна, то все \(\beta_{\nu} \) не зависят от \(i \) и для лю-
бого технического изделия с любой наработкой построение прогноза по-
требует запоминания лишь \(l \) чисел \(\beta_{\nu} \).

При выполнении предварительных расчетов \(\beta_{\nu} \) на основании стати-
стического материала об эксплуатации изделий, разумеется, целесоооб
разно проверить гипотезу о стационарности x_j, так как даже решение о включении прогнозирования в программу АСК может зависеть от результатов такой проверки. Целью данной заметки является построение алгоритма проверки гипотезы о стационарности случайной временной последовательности, которая задана набором, содержащим L реализаций x_j.

$$
\begin{align*}
\{x_{ij}\} = & \begin{pmatrix}
 x_{11} & x_{21} \ldots x_{N1} \\
 x_{12} & x_{22} \ldots x_{N2} \\
 \vdots & \vdots \\
 x_{1L} & x_{2L} \ldots x_{NL}
\end{pmatrix},
\end{align*}
$$

(2)

Подобную матрицу из L реализаций случайных последовательностей с нулевым математическим ожиданием нетрудно получить по следованиям, накопленным в процессе эксплуатационного контроля однотипных технических устройств, с помощью методики, данной в [1].

По исходному статистическому материалу (2) строим оценки для корреляционной функции

$$
R_i(p) = \frac{\sum_{j=1}^{L} x_{ij} x_{i+p,j}}{\sum_{i=1}^{L} x_{ij}^2}.
$$

(3)

Если последовательности x_j стационарны, то все $R_i(p)$ суть случайные оценки одной и той же величины $R_i(p)$. Построить статистический критерий значимости колебаний $R_i(p)$ непосредственно на основании оценок (3) нельзя, так как $R_i(p)$ и $R_n(p)$ при $n < i + l$ зависимы, поскольку для их расчета используется один и тот же материал — последовательность зависимых величин x_{ij}. Здесь l — наибольшее значение p, при котором $R(p)$ еще значимо отличается от нуля.

Однако по тем же исходным данным (2) можно получить набор невзависимых оценок для частных коэффициентов корреляции

$$
R_i(p|i+1, i+2, \ldots i+p-1, i+p+1, \ldots i+m),
$$

где

$$
m = \begin{cases}
 l-p, & \text{если } p \leq l/2; \\
 p, & \text{если } p > l/2,
\end{cases}
$$

так как это оценки корреляции значений последовательностей x_j, отстоящих друг от друга на p шагов с исключением влияния значений, связанных с обоими сомножителями x_{ij} и $x_{i+p,j}$. Зависимость между собой по одному сомножителю в парах $x_{ij} x_{i+p,j}$ и $x_{nj} x_{n+p,j}$ для $n \leq i + m$ при условии независимости первой пары от сомножителей второй пары, т. е. если $n > i + m$, не вызывает статистической связи оценок $R_i(p|i+1, \ldots i+m)$ и $R_n(p/n+1, \ldots n+m)$. Для получения оценок частных коэффициентов корреляции [2, стр. 44] строим матрицу корреляций процесса x, начиная с i-й точки:

$$
\begin{pmatrix}
 R_i(0) & R_i(1) & \ldots & R_i(m) \\
 R_i(1) & R_i(0) & \ldots & R_i(m-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 R_i(m) & R_i(m-1) & \ldots & R_i(0)
\end{pmatrix},
$$

(4)
Перестановкой на второе место p-го столбца и p-й строки матрицы (4) приводим ее к виду

\[
| R_i(m) | = \begin{bmatrix} | R_i(0, p) | & | R_i(1 \ldots m/p) | \\ | R_i(1 \ldots m/p) | & | R_i(m - 1, p) | \end{bmatrix}
\]

| \(R_i(0) \) & \(R_i(p) \) & \(R_i(1) \) & \(R_i(2) \) & \ldots & \(R_i(m) \) \\
| \(R_i(p) \) & \(R_i(0) \) & \(R_i(m) \) & \(R_i(m - 1) \) & \ldots & \(R_i(1) \) \\
| \(R_i(1) \) & \(R_i(m) \) & \(R_i(0) \) & \(R_i(1) \) & \ldots & \(R_i(m - 1) \) \\
| \(R_i(2) \) & \(R_i(m - 1) \) & \(R_i(1) \) & \(R_i(0) \) & \ldots & \(R_i(2) \) \\
| \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \]

Элемент матрицы

\[
\begin{bmatrix} \sigma_{11} & \sigma_{1p} \\ \sigma_{p1} & \sigma_{pp} \end{bmatrix} = | R_i(0, p) | - | R_i(1 \ldots m/p) | | R_i^{-1}(m - 1, p) | | R_i'(1 \ldots m/p) |,
\]

(5)

стоящий в правом верхнем углу, является ковариацией i-го и (i+p)-го значений X, не зависящей от \(x_{i+1}, x_{i+2}, \ldots, x_{i+p-1}, x_{i+p}, \ldots, x_{i+m} \).

Искомый частный коэффициент корреляции получается по формуле

\[
R_i(p|i + 1 \ldots i + m) = \frac{| \sigma_{1p} |}{| \sigma_{11} | | \sigma_{pp} |}.
\]

(6)

Рассчеты по формулам (5), (6) можно проделать при обработке статистических данных эксплуатационного контроля параметров технических устройств на ЦВМ небольшой мощности, поскольку i чаще всего невелико.

По полученным частным коэффициентам корреляции \(R_i(p/2 \ldots m + 1), R_i(p/3 \ldots m + 2), \ldots, R_i(p/i + 1 \ldots i + m) \ldots \) можно проверить гипотезу об их неизменности по i, так как все они являются независимыми случайными величинами, имеющими распределение выборочного коэффициента корреляции, подсчитанного по выборке объема \(L_i - p - 2 \). При \(L_i - p - 2 > 20 \) погрешность будет незначительна [2, стр. 110], если использовать преобразование Фишера

\[
z_i(p) = \frac{1}{2} \ln \frac{1 + R_i(p|i + 1 \ldots i + m)}{1 - R_i(p|i + 1 \ldots i + m)},
\]

(7)

полагая, что все \(z_i(p) \) распределены нормально с дисперсией \((L_i - p - 2)^{-1} \).

Для проверки значимости колебаний \(R_i(p) \) следует использовать [3]-статистику \(\gamma_p \), получающуюся суммированием квадратов нормальных случайных величин \(z_i(p) \) с весами, пропорциональными дисперсиям:

\[
\gamma_p = \sum_{i=1}^{N-p} (L_i - p - 1) z_i^2(p) - \frac{\left[\sum_{i=1}^{N-p} (L_i - p - 1) z_i(p) \right]^2}{\sum_{i=1}^{N-p} L_i - p - 1}.
\]

(8)

Статистика \(\gamma_p \) имеет \(\chi^2 \)-распределение с \(N-p-1 \) степенями свободы. При \(N-p-1 > 25 \) распределение \(\gamma_p \) хорошо аппроксимируется нормаль-
ным, и поэтому гипотезу о стационарности случайных последовательностей x_j следует принять с вероятностью α, если

$$r_p < N - p - 1 + t_{x} \sqrt{2(N - p - 1)},$$

где t_{x} — квантиль нормального распределения.

Литература

1. М. В. Савенков. Оценка спектральной плотности случайной последовательности, заданной небольшим числом реализаций, для построения прогноза изменения параметров технических объектов в процессе эксплуатации. — Автометрия, 1970, № 5.

Поступила в редакцию
31 мая 1971 г.