М. Ф. Зарипов, Э. У. Ибрагимов, Г. Р. Шаякулов
(Ташкент)

АППРОКСИМАЦИЯ МАГНИТНЫХ ХАРАКТЕРИСТИК
МАГНИТОМУЛЬЯЦИОНАРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ ПАРАМЕТРОВ ДВИЖЕНИЯ

В современной технике широко применяются электромагнитные устройства (магнитные усилители, феррорезонаторы и т. п.), работающие при воздействии одновременно двух и более магнитных полей. К таким устройствам относятся и магнитомодуляционные датчики линейных скоростей и перемещений, основанные на изменении удельного магнитного сопротивления ρ_m участка магнитной цепи переменному потоку в функции величины постоянного магнитного потока.

Магнитомодуляционные датчики линейных скоростей и перемещений (рис. 1) представляют собой упругий S-образный (или L-образный) магнитопровод 1 с двумя встречными секциями обмотки возбуждения 7, 8, расположенными на торцах среднего стержня 1 основания провода, которое выполнено в виде замкнутых колец из пермаллоя. На каждом из этих колец намотаны две одинаковые катушки индуктивности (2, 3, 4 и 5), соединенные между собой по мостовой схеме. Средний стержень магнитопровода охвачен подвижной подмагничивающей обмоткой 6, жестко связанной с контролируемым объектом.

![Рис. 1.](image)

При регистрации линейных перемещений подмагничивающая обмотка 6 подключается к источнику постоянного тока. При перемещении подвижной обмотки в ту или иную сторону от центра изменяется подмагничивающий постоянный поток, протекающий через основания, вследствие чего изменяются удельные магнитные сопротивления ρ_m оснований. В результате изменяются индуктивности катушек и соответственно выходное напряжение моста.

Для регистрации линейных скоростей необходимо к источнику постоянного тока подключить последовательно и встречно включенные секции обмотки возбуждения, а подмагничивающую обмотку 6 замкнуть накоротко. При перемещении короткозамкнутой подмагничивающей обмотки 6 с линейной скоростью V в ней индуцируется ток, создающий подмагничивающий постоянный магнитный поток. В результате этого по аналогии с датчиком перемещения на выходе моста изменяется переменное напряжение, зависящее от величины контролируемой скорости.

Анализ метрологических характеристик [2] описанных датчиков, обеспечивающих высокую чувствительность, весьма затруднителен без аппроксимации зависимости $\rho_m = f (B_m)$ магнитного материала основания.

В литературе [3, 4] зависимости $\rho_m = f (B)$ получены либо при воздействии одной магнитной индукции (B_m или B_∞), либо при комбинированном воздействии двух индукций, но совпадающих по направлению. Ниже решается задача экспериментального определения $\rho_m = f (B)$ и аппроксимации такой зависимости применительно к описанным датчикам. При этом учитываются одновременное воздействие индукции B_m переменного магнитного поля и индукции B_∞ постоянного магнитного поля.
этого через отверстие основания (см. рис. 1) намотана вспомогательная обмотка 9, равномерно распределенная по периметру отверстия и включенная к источнику переменного тока. Для определения значений индукции использовано последовательное и согласно соединение обмотки 2, 3. Результаты экспериментов $B_\omega = f(I_\omega)$ на образце из пермаллоя (с размерами: $S = 2.8 \cdot 10^{-8}$ м2 — сечение основания магнита)

$$B_\omega = \frac{E}{\omega S W_\Omega},$$

где E — э. д. с., индукированная в последовательно соединенных обмотках 2, 3; ω — угловая частота питания; S — сечение основания магнитопровода; W_Ω — число витков обмоток 2, 3. Затем обмотку 8 подключаем к источнику постоянного тока и при заданном неизменном значении переменного тока (индукции B_ω) значение постоянного тока I_ω увеличиваем от нуля до максимума, определяя для каждой фиксированных значений I_ω и I_ω э. д. с. E в обмотках 2, 3.

Удельное магнитное сопротивление пермаллоя определяется из выражения

$$\chi_\omega = \frac{S W_\Omega I_\omega}{E I},$$

где W_Ω- число витков вспомогательной обмотки 9.

Результаты экспериментов (рис. 3) $\rho_\omega = f(B_\omega)$ получены при следующих значениях переменной магнитной индукции B_ω: 0,0254 · 10$^{-2}$ (кривая 1), 0,0426 · 10$^{-2}$ (кривая 2), 0,065 · 10$^{-2}$ (кривая 3), 0,376 · 10$^{-2}$ (кривая 4), 1,015 · 10$^{-2}$ (кривая 5), 2,84 · 10$^{-2}$ (кривая 6), 5,23 · 10$^{-2}$ (кривая 7) и 10,56 · 10$^{-2}$ Т (кривая 8). Значения индукции B_ω получены из рис. 2 с допущением $B_\omega = B_\omega$ при условии $I_\omega = I_\omega$.

В [2] впервые определены аппроксимирующие функции зависимости $\rho_\omega = f(B)$ с разделением ее по участкам применительно к преобразователям с распределенными параметрами. Если аппроксимировать таким же образом зависимость $\rho_\omega = f(B)$ (см. рис. 3) при воздействии индукции B_ω, то аппроксимирующая функция получается слишком громоздкой и неудобной для анализа характеристик.

С целью упрощения аппроксимации экспериментальной зависимости $\rho_\omega = f(B)$ аналитической функцией и упрощения определения коэффициентов аппроксимации выбираем зависимость

$$\rho_\omega = K_1 \text{ch} K_2 B_\omega .$$

При $B_\omega = 0$, согласно выражению (3), имеем

$$\rho_\omega = \rho_{\omega 0} = K_1,$$

а при $B_\omega = B_\rho$

$$\rho_{\omega \rho} = \rho_{\omega 0} \text{ch} K_2 B_\rho ;$$

отсюда

$$K_2 = \frac{1}{B_\rho} \arccosh \frac{\rho_{\omega \rho}}{\rho_{\omega 0}};$$

где B_ρ и $\rho_{\omega 0}$ — соответственно магнитная индукция и удельное магнитное сопротивление для выбранной точки на кривой $\rho_\omega = f(B_\omega)$.

Для всех кривых рис. 3 определены коэффициенты K_1 и K_2, а результаты расчетов приведены в виде графиков $K_1 = f_1(B_\omega)$ и $K_2 = f_2(B_\omega)$ на рис. 4.

121
Литература

1. М. Ф. Зарипов, Э. У. Ибрагимов, Н. А. Ахраров, Т. М. Курбанов, Х. Х. Хакимов. Магнитнодиодуционационный индуктивный датчик линейных перемещений. Авторское свидетельство № 252125 — ООППТЗ, 1969, № 28.
2. М. Ф. Зарипов. Теория длинных магнитных линий и преобразователей с распределенными электромагнитными параметрами применительно к устройствам информационно-измерительной техники. Ташкент. Реферат докт. дисс., 1969.

Поступило в редакцию 17 сентября 1970 г.

УДК 621.372.44

Р. Д. Баглая, А. П. Бахтина
(Новосибирск)

Экспериментальное воспроизведение (вычисление) функции распределения Пуассона

В [1] было показано, что задача экспериментального определения моментов сигнала \(f(t) \), которая может решаться с помощью аналоговых устройств типа последовательной цепочки «идеальных» интерплирующих звеньев, сводится к технически более простой задаче — определению коэффициентов Пуассона этого сигнала с помощью цепочки