Результаты расчетов, согласно выражениям (3), (4), (6), совпали с незначительной погрешностью (порядка ±1%) с экспериментальной кривой (см. рис. 3) (расчетная кривая дана сплошной линией, а экспериментальная — штрихами). Таким образом, пользуясь кривыми $K_1 = f_1(B_-)$ и $K_2 = f_2(B_-)$, согласно выражению (3), можно с достаточной для анализа точностью построить зависимости $f_n = f_n(B_-)$ для любого значения B_-.

Литература

1. М. Ф. Зарипов, Э. У. Ибрагимов, Н. А. Ахраров, Т. М. Курбанов, Х. Х. Хакимов. Магнитомодуляционный индуктивный датчик линейных перемещений. Авторское свидетельство № 252125 — ОИПОТЗ, 1969, № 28.
2. М. Ф. Зарипов. Теория длинных магнитных линий и преобразователей с распределенными электромагнитными параметрами применительно к устройствам информационно-измерительной техники. Ташкент. Реферат докт. дисс., 1969.

Поступило в редакцию 17 сентября 1970 г.

Р. Д. БАГЛАЙ. А. П. БАХТИНА
(Новосибирск)

Экспериментальное воспроизведение (вычисление) функции распределения Пуассона

В [1] было показано, что задача экспериментального определения моментов сигнала $f(t)$, которая может решаться с помощью аналоговых устройств типа последовательной цепочки «идеальных» интегрирующих звеньев, сводится к технически более простой задаче — определению коэффициентов Пуассона этого сигнала с помощью цепочки...
апериодических звеньев. Такая возможность вытекает из установленной в [1] рекуррентной зависимости между моментами и коэффициентами Пуассона. Эта зависимость позволяла также выявить простую связь между спектрами коэффициентов разложения сигнала по различным ортогональным системам функций.

В настоящей заметке показано, каким образом цепь, состоящая из апериодических звеньев и предназначенная для определения коэффициентов Пуассона, может быть применена в целях воспроизведения (вычисления) функции распределения Пуассона, а также иных функций из семейства так называемых гамма-плотностей [2]. Эта новая возможность основана на выявленной связи между коэффициентами Пуассона единичного сигнала 1(t) и одноименным распределением случайной величины и на следующем замечательном свойстве показательно-стенных функций вида $\frac{t^k}{k!} e^{-t}$: суммирование функций $\frac{t^k}{k!} e^{-t}$ по k в пределах $(N+1, \infty)$ при фиксированном $t=\Theta$ равносильно интегрированию функции $\frac{t^k}{k!} e^{-t}$ по t в пределах $(0, \Theta)$ при фиксированном $k=N$ (см. (4)). Заметим, что воспроизведенный в виде сигнала закон (функция) распределения может в дальнейшем использоваться также в качестве модели при изучении неизвестных распределений.

Итак, пусть случайная величина распределена с плотностью

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda},$$

(1)

gде λ — математическое ожидание числа событий, приходящихся соответственно на интервалы (0, 1) и (0, T). Для вычисления вероятности того, что на интервале (0, T) произойдет более чем N событий, необходимо выполнить следующие математические операции:

$$\sum_{k=N+1}^{\infty} \frac{\Theta^k}{k!} e^{-\Theta},$$

(2)

gде $\Theta=\lambda T$ — величина известная. Покажем, что вычисления типа (2) могут быть выполнены на чрезвычайно простом аналоговом специализированном устройстве. Для этого рассмотрим разложение единичного сигнала 1(t), заданного на интервале (0, Θ), по системе функций Пуассона $\left\{\frac{t^k}{k!} e^{-t}\right\}_0$. Запишем выражение для коэффициента Пуассона ($\tilde{\gamma}_k$), т. е. для k-го коэффициента разложения единичного сигнала по функциям

$$\tilde{\gamma}_k = \int_0^{\Theta} 1(t) \frac{t^k}{k!} e^{-t} dt.$$

(3)

Заменим t на Θ, получим

$$\tilde{\gamma}_k = \int_0^{\Theta} 1(t) \frac{(\Theta t)^k}{k!} e^{-\Theta t} dt.$$

(3')

Выражение (3') будем толковать как k-й коэффициент Пуассона от постоянной функции, заданной на интервале (0, 1) и численно равной математическому ожиданию Θ.

При выражение (3), как нетрудно проверить, при $k=N$ может быть представлено в виде

$$\tilde{\gamma}_N = \int_0^{\Theta} 1(t) \frac{t^N}{N!} e^{-t} dt = \sum_{k=N+1}^{\infty} \frac{\Theta^k}{k!} e^{-\Theta}.$$

(4)

Следовательно, связь между коэффициентами Пуассона и одноименным распределением выражается простым соотношением

$$P(k=N) = \tilde{\gamma}_N.$$
или

\[P (k < N) = 1 - \hat{p}_N. \] (6)

С другой стороны, выражение (3) [соответственно (3')] просто моделируется с помощью последовательной цепочки из \(k+1 \) \((k=1, 2, \ldots, N)\) аперIODических и не нагружающих друг друга энсембли из постоянными времени, равными 1 (соответственно \(\frac{1}{\theta} \)). В самом деле, импульсная переходная характеристика в узле \(K \) такой цепи (см. рисунок) равна

\[\frac{t^k}{k!} e^{-t} \left(\text{или} \frac{\theta}{k!} e^{-\frac{t}{\theta}} \right), \]

а поскольку входной единичный сигнал симметричен относительно прямой \(t = \frac{\theta}{2} \) при любом верхнем пределе интегрирования \(\Theta \), то интеграл свертки функции \(\frac{t^k}{k!} e^{-t} \) (или \(\frac{\theta}{k!} e^{-\frac{t}{\theta}} \)) с этим единичным сигналом можно заменить их скалярным произведением, т. е. интегралом вида (3) или (3'). (Заметим, что повторители напряжения (II), собранные по хорошо известным схемам, легко обес- печивают коэффициент повторения более 0,999.)

При подключении к входу цепи (см. рисунок) постоянного напряжения, равного 1 (или \(\Theta \)), в узлах 0, 1, 2, \ldots, \(N \) появляется непрерывный сигнал, соответствующий коэффициентам \(\hat{p}_0, \hat{p}_1, \ldots, \hat{p}_N \), каждый из которых в интервале \((0, \Theta)\) (или \((0, 1)\)) представляет собой соответствующее текущее значение распределения \(P(k > i) \), где \(i = 0, 1, \ldots, N \).

Воспроизведение (вычисление) \(P (K < N) \) получится, если сложить все напряжения, снимаемые в узлах 0, 1, \ldots, \(N \), при возбуждении устройства короткими импульсами единичной площади. Однако технически этот вариант решения менее интересен.

Для вычисления (2) обычно применяют дискретную вычислительную технику или соответствующие таблицы. Однако исключительная простота полученного аналогового устройства позволяет надеяться на целесообразность и эффективность его практического применения для указанных выше целей.

В заключение заметим, что выражение (4) для \(\hat{p}_N \) можно рассматривать как интегральную функцию композиции \(N+1 \) законов распределения с экспоненциальными плотностями \(\lambda e^{-\lambda T} \), которая входит в семейство гамма-плотностей [2]. После очевидных и несложных добавлений устройство типа, показанного на рисунке, можно применить для экспериментального воспроизведения (вычисления) функций всего этого семейства.

Литература

1. Р. Д. Баглай. Об экспериментальном определении моментов и их связи с обобщенным преобразованием Фурье.— Автометрия, 1970, № 4.

Поступило в редакцию 31 декабря 1970 г.