АКАДЕМИЯ НАУК СССР СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

1991

№ 1

ОПТИЧЕСКИЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

УДК 539.23: 539.216: 546.02

В. В. АТУЧИН, К. К. ЗИЛИНГ, А. А. КРЕЙМЕР, А. Е. ПЛОТНИКОВ (Новосибирск)

ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ ВОЛНОВОДОВ LiTaO₃ : Zn и LiNbO₃ · Zn

Для создания оптических волноводов в LiTaO₃ и LiNbO₃ обычно используется диффузионное легирование приповерхностных слоев титаном из предварительной нанесенной пленки Ті или TiO₂. Температуры диффузии составляют ~1200 °C для LiTaO₃ и ~1000 °C для LiNbO₃. Столь высокие температуры, особенно в случае LiTaO₃, неудобны тем, что приводят к неконтролируемым изменениям скорости диффузии вследствие потери кристаллом лития при нагреве [1].

Недавно предложен метод синтеза волноводов в LiTaO₃ путем легирования цинком из газовой фазы [2, 3], позволяющий снизить температуру процесса до 800—900 °С и получить структуры с потерями порядка 1 дБ/см. Однако свойства указанных волноводов изучены совершенно недостаточно, а сам метод технологически неудобен.

В настоящей работе исследуется возможность получения волноводных структур LiTaO₃: Zn и LiNbO₃: Zn с помощью диффузии из нанесенной на поверхность пленки ZnO и находятся параметры, определяющие характеристики этих волноводов.

Постановка эксперимента. В работе использованы подложки танталата и ниобата лития Y-среза. Оцененная по величине двулучепреломления мольная доля Li₂O находится в пределах $v = 0,487 \pm 0,001$ для LiTaO₃ и $v = 0,4845 \pm 0,0005$ для LiNbO₃. Пленки ZnO толщиной 100—130 нм нанесены с помощью магнетронного распыления в атмосфере из смеси аргона и кислорода в соотношении 4:1 при давлении в системе $(1-2) \cdot 10^{-3}$ тор. Скорость осаждения 1,2 нм/с. Диффузионный отжиг танталата лития проведен при температурах T = 700-1000 °C в атмосфере сухого воздуха. Образцы ниобата лития отжигались при T' = -900 °C в сухом либо влажном воздухе.

Профили показателей преломления полученных волноводов на длине волны $\lambda = 0,6328$ мкм восстановлены по методу [4] из модовых спектров, найденных в условиях призменного ввода. Приращения обыкновенного Δn_o и необыкновенного Δn_e показателей преломления на поверхности обоих материалов сопоставлены с концентрацией легирующего элемента, определенной с помощью рентгеноспектрального анализа.

Результаты и обсуждение. Найдено, что после отжига длительностью t = 2-20 ч полученные волноводы поддерживали 3-5 мод каждой поляризации, а восстановленные зависимости Δn_e и Δn_o от глубины xблизки к функции Гаусса. Как показано на рис. 1, Δn_o для обоих исследованных материалов не пропорционально Δn_e . Причины данного эффекта в работе не исследовались, однако по аналогии с твердыми растворами LiNbO₃: TiO₂ [5] можно предполагать, что излом на кривых связан с изменением химической формулы обсуждаемых соединений. 23

для LiTaO₃: Zn (криван 1) и LiNbO₃: Zn (криван 2)

гас. 2. зависимость нормированных на максимальное значение S_e (кривая *J*) и S_0 (кривая *2*) от времени отжига для волноводов LiTaO₃: Zn

Для выяснения связи Δn_e и Δn_o с концентрацией диффузанта проведен ряд последовательных ожигов образцов LiTaO₃ при T = 900 °C и на рис. 2 представлены зависимости $S_e(t)$ и $S_o(t)$, где $S_e(t)$ н $S_o(t)$ площади под кривыми $\Delta n_e(x, t)$ и $\Delta n_o(x, t)$. Видно, что на начальном участке $S_e(t)$ и $S_o(t)$ возрастают. Микроскопическое изучение поверхности показало, что этот рост связан с вхождением в кристалле остатков пленки ZnO. При дальнейшем возрастании t величина S_e в пределах точности измерений (~7%) остается постоянной, что указывает на зависимость вида $\Delta n_e(c) \simeq A_e c$, где c — мольная доля цинка; Λ_e — коэффициент пропорциональности. Некоторое изменение S_o при росте t свидетельствует о том, что предположение о пропорциональности Δn_o п c не выполняется. Исходя из рис. 1, можно допустить, что эта зависимость является билинейной с изменением коэффициента пропорциональности Λ_o при концентрации c_o , соответствующей точке излома.

Па рис. З представлены значения коэффициентов диффузии \mathcal{D} цпнка в LiNbO₃ и LiTaO₃. Отжиг проведен в сухом воздухе. Величныя \mathcal{D} рассчитаны из значений t и наклона графиков $\ln \Lambda n_e(x) - x^2$. На этом же рисунке приведены данные, полученные в [6] для LiNbO₃ и в [2, 3] для LiTaO₃ при отжиге в аналогичных условиях. Вычисленные по совокупности результатов значения энергии активации и предэкспоненциального множителя составили соответственно 1,8 эВ и 1,15 · 10⁻³ см²/с для LiNbO₃ и 1,75 эВ и 1,36 · 10⁻⁴ см²/с для LiTaO₃.

Обнаружено, что в LiNbO₃ скорость диффузии цинка существенным образом зависит от состава кристаллов. Так, отжиг образцов во влажном воздухе, предотвращающий потерю лития за счет испарения, приводит к

понижению \mathcal{D} в 2–2,5 раза (см. фигуру на рис. З, помеченную стрелкой). Как и в случае диффузии титана [7], наблюдаемый эффект может быть объяснен образованием дополнительных катнонных вакансий при уменьшении мольной доли Li₂O [8]. В LiTaO₃ при $T \sim 900$ °C условия отжига оказывают гораздо меньшее влияние на скорость диффузии. Так, отжиг в сухом воздухе в интервале t = 2-12 ч не приводит к из-

Рис. 3. Зависимость коэффициента диффузии Zn от температуры:

криван I — LiTaO3, криван 2 — LiNbO3; светлые фигуры — даные пастоящей работы, темные кружки — результаты [2, 3], темные треугольники -- результаты [6]

64

Материал	Режим отжига	Ae	A ₀
LiTaO ₃	t = 7 ч, CB	0,11	0,15
	$t = 18 ext{ y}, ext{CB}$	0,08	0,15
LiNbO ₃	t = 7ч, BB	0,16	0,12
	t = 7 y, BB + t = 2 y, CB	0,12	0,11
	t -= 7 ч, CB		0,10

Значения A_e и A_o в зависимости от времени отжига при T = 900 °C в сухой (CB) или влажной (BB) атмосфере

.....

меряемому измецению \mathcal{D} , и только увеличение длительности до 18 ч и более повышает значение \mathcal{D} от $(3,5 \pm 0,5) \cdot 10^{-12}$ до $(4,5 - 5) \cdot 10^{-12}$ см²/с.

Установим теперь количественную связь Δn и c, т. е. найдем величину коэффициентов A_e и A_o . Значение A_c определено двумя методами: сопоставлением Δn_e на поверхности с концентрацией, найденной рентеноспектральным анализом, либо сопоставлением S_e с удельной массой цинка в иленке. Оба метода дали близкие результаты. Коэффициенты A_o для $c \ge c_o$ определены по известным A_c и c с учетом зависимостей, приведенных на рис. 1.

Результаты представлены в таблице. Видно, что в LiTaO₃ A_o практически не зависит от условий диффузионного отжига, а A_o слегка падает при длительной выдержке, когда можно предположить обедисиие поверхности литием. Для кристаллов LiNbO₃ эффекты, связанные с изменением состава, гораздо более существенны. Как видно из таблицы, уже двухчасовой дополнительный отжиг в сухом воздухе приводит к заметпому падепию A_o по сравлению с величиной, полученной при диффузии во влажной атмосфере. Если отжиг с самого начала проводить в сухом воздухе, то за время 2—3 ч образуется волновод, поддерживающий 2—3 моды каждой поляризации. При увеличении t до 7 ч ТЕ моды исчезают вообще, а величина A_o составляет ~0,10, т. е. уменьшается на 20 %.

Для того чтобы понять причины обнаруженных эффектов, рассмотрим физические механизмы, ответственные за формирование волноводных слоев при легировании. Известно [5], что приращение показателей преломления в сегнетоэлектрике может быть представлено в виде суммы трех членов

$$\Delta n_{o,e} = A_{o,e}c = \left(A_{o,e}^R + A_{o,e}^P + A_{o,e}^\varepsilon\right)c,$$

где A^{R} , A^{P} в A^{e} отражают соответственно вклад за счет изменения молекулярной рефракции R при легировании, вклад за счет изменения спонтанной поляризации P_{*} (либо связанной с ней температуры Кюри T_{c}) и упругооптический эффект. Как показывают оценки, выполненные на основе литературных данных о нараметрах решетки в системах LiNbO₃ (ZnO и LiTaO₃ — ZnO, упругооптический эффект в этих твердых растворах не играет существенной роли. Таким образом, $\Delta n_{o,e} \simeq (A^{R}_{o,e} + A^{P}_{o,e}) c.$

Используи обычное допущение об отсутствии в кристаллах аннонных вакансий, из условия электропейтральности ири движении по линии LiMO₃ — ZnO фазовой диаграммы имеем следующую формулу твердого раствора: (LiM)_{1-v/3}Zn_vO₃, где М — Nb или Ta. В этом случае коэффициенты A^R могут быть записаны следующим образом [5]:

$$A_0^R = \frac{\left(n_0^2 - 2\right)^2}{6n_0 V} \left(R_{11}^* - R_{11}/3\right); \quad A_e^R = \frac{\left(n_e^2 + 2\right)^2}{6n_e V} \left(R_{33}^* - R_{33}/3\right). \tag{1}$$

25

Здесь V — мольный объем LiNbO₃ или LiTaO₃, R_{ii}^* и \bar{R}_{ii} — соответственно компоненты тензора рефракции ZnO и кристалла-подложки.

Выражения для А^Р имеют вид

$$A_{o}^{P} = -\frac{n_{0}^{3}g_{13}}{2B}\frac{\Delta T_{c}}{\Delta c}; \quad A_{e}^{P} = -\frac{n_{e}^{3}g_{33}}{2B}\frac{\Delta T_{c}}{\Delta c}, \tag{2}$$

где g_{ii} — квадратичные электрооптические коэффициенты; B — численный коэффициент.

ный коэффициент. Для оценки A^{R} примем, что $R_{11}^{*} = R_{33}^{*} = R^{*}$, т. е. рефракция ZnO изотропна. Используя для окиси цинка табличные значения $n_{o} = 1,990$, $n_{e} = 2,0072$ и V = 14,429 см³ [9], из формулы Лорентц — Лоренца имеем $R^{*} = 7,22$ см³. Аналогичные оценки дают для LiNbO₃ $R_{11} = 18,70$, $R_{33} = 17,97$ см³ [5], а для LiTaO₃ $R_{11} \simeq R_{33} = 17,57$ см³ [10]. Подставляя полученные величины в (1), имеем для LiNbO₃: Zn значения $A_{o}^{R} =$ $= 0,118 \simeq 0,12$ и $A_{e}^{R} = 0,137 \simeq 0,14$, а для LiTaO₃: Zn $A_{o}^{R} \simeq A_{e}^{R} = 0,15$. Видно, что вычисленные A_{o}^{R} близки к наблюдаемым экспериментально величинам A_{o} . Однако изменение рефракции при легировании не может объяснить ни наблюдаемых значений A_{e} , ни их уменьшения при обеднении кристаллов литием.

Рассмотрим вклад за счет изменения P_{\bullet} (или T_{c}), используя при расчетах A^{p} значение B, определенное в [11]. Фигурирующие в (2) величины $\Delta T_{c}/\Delta c$ для системы LiTaO₃: Zn при различных ν могут быть получены из совокупности работ [12—14]. Учитывая погрешности в определении T_{c} и некоторое различие полученных разными авторами данных, для $\nu = 0,50$; 0,482 и 0,474 имеем $\Delta T_{c}/\Delta c$ соответственно —460, +(180—520) и +(1360—1760)°С. Вычисленные по этим данным коэффициенты A_{e}^{P} и A_{o}^{P} в функции ν приведены на рис. 4. Видно, что стехиометрия кристаллов очень сильно влияет на характеристики волноводных слоев: при уменьшении ν меняется не только абсолютная величина коэффициентов A_{e}^{P} и A_{o}^{P} , но и их знак.

 $\hat{\mu}_{\pi\pi}$ использованного в работе состава образцов танталата лития из приведенных на графиках зависимостей имеем $A_o^P \approx 0$, $A_e^P \simeq -0.02$. Таким образом, $A_0 \simeq A_o^R + A_o^P \simeq 0.15$ и $A_e \simeq A_e^P + A_e^P \simeq 0.13$, что достаточно близко к экспериментальным данным, полученным при малых временах отжига. Этот результат подтверждает вывод работы [3] об отсутствии существенного обеднения литием в условиях отжига при T = 800-900 °C и t - 6 - 7 ч. При увеличении t до 18-20 ч изменение A_e на 0.03 свидетельствует об уменьшении ν приблизительно на 0.003-0.004.

Для ниобата лития из имеющихся литературных данных [15, 16] может быть определено надежно только значение $\Delta T_c/\Delta c \simeq +1100^\circ$

```
при v = 0,474. Предполагая, что влажная атмосфера полностью предо-
26
```

храняет состав от изменения, значение A_e^P для v = 0,485 может быть найдено, как разность между экспериментальным A_e и расчетной величиной A_e^R : $A_e^P \simeq A_e - A_e^R \simeq 0.02$. Полученный из этих данных приближенный вид зависимостей $A_e^P(v)$ и $A_o^P(v)$ показан на рис. 4 штриховыми линиями. Видно, что при уменьшении у А. убывает весьма быстро и для объяснения наблюдаемого исчезновения ТЕ-мод достаточно, чтобы в приповерхностных слоях кристалла мольная доля Li₂O понизилась до значения ~0,477, т. е. на величину ~0,008. Сопоставление [17] и [18] показывает, что именно такого порядка уменьшение у экспериментально наблюдается в ниобате лития при отжиге в сопоставимых условиях.

В заключение заметим, что величины Ао,е, определенные в литературе для ряда твердых растворов на основе ниобата и танталата лития, обычно рассматриваются как константы, а несовпадение значений, полученных различными авторами, никак не анализируется. Обнаруженная в настоящей работе сильная зависимость Λ^p от ν для систем LiTaO₃: Zn и LiNbO₃: Zn и ее онисание на основе данных о виде функции $T_{c}(c, v)$, во-первых, дают возможность предсказать вид A(v) и для других систем и. во-вторых, приводят к пониманию того, что стехнометрия исходных кристаллов и ее изменение в процессе спитеза являются важным фактором, обеспечивающим воспроизводимость нараметров волноводных слоев.

СПИСОК ЛИТЕРАТУРЫ

- Атучин В. В., Зилинг К. К., Плотников А. Е., Шипилова Д. П. Исследование оп-тических волноводов, полученных диффузисй титача в LiTaO₃ // Интегральная оптика. Опрические основы. Приложения.— Новосибирск: Наука, 1986.
 Екпоуан О., Yoon D. W., Taylor H. F. Low-loss optical waveguides in lithium tan-talate by vapor diffusion // Appl. Phys. Lett.— 1987.— 51.— Р. 384.
 Yoon D. W., Eknoyan O. Characterization of vapor diffused Zn : LiTaO₃ optical waveguides // J. Lightwave Techn.— 1988.— 5, N 6.— Р. 877.
 Инанкин В. Г., Ичелкин В. Ю., Шашкин В. В. О применении ВКБ-метода для оп-ределения профили показора предокудения в изоских лифорудовных колно-роделения профили показора.

- напокава Б. г., нчелкин Б. Ю., шашкин В. В. О применении ВКБ-метода для оп-ределения профиля показателя преломления в плоских диффузионных возно-водах // Кнантовая электрон.— 1977.— 4, № 7.
 Atuchin V. V., Ziling C. C., Shipilova D. P., Beizel N. F. Crystallographic, ferroelect-ric and optical properties of TiO₂ doped LiNbO3 crystals // Ferroelectrics.— 1989.— 100.— P. 261.
 Bound C. D. Schmidt B. W. St. E. C. Statistical distance of the state of
- Boyd G. D., Schmidt R. V., Storz F. G. Characteristics of metal-diffused LiNbO₃ for acoustic devices # J. Appl. Phys. 1977. 48, N 7. P. 2880.
 Holmes R. J., Smyth D. M. Titanium diffusion into LiNbO₃ as a function of stoichiometry # J. Appl. Phys. 1984. 55, N 10. P. 3531.
 Holmes R. J., Minford W. J. The effects of boule to boule compositional variations on the promotion of LiNbO₃ defined with a statement of the promotion o
- on the properties of LiNbO₃ electro-optic devices- and interpretation from defect chemestry studies # Ferroelectrics.— 1987.— 75.— P. 63.
- Акустические кристальк.— М.: Наука, 1982.
 Акустические кристальк.— М.: Наука, 1982.
 Атучин В. В., Зилинт К. К., Клинко А. Т. Оптические волноводы LiTaO₃: Zr и LiTaO₃: Hf // Автометрия.— 1983.— № 5.
 Кузьминов Ю. С. Сегнетоэлсктрические кристаллы для контроля лазерного из-
- лучения. М.: Наука, 1982. 12. Barns R. L., Garruthers J. R. Lithium tantalate single crystal stoichiometry //
- J. Appl. Cryst. 1970. 3. P. 395. 13. Gi-Tae Joo, Senegas J., Ravez J., Hagenmuller P. Magnesium and zinc cation dist-
- ributions and correlation with Curic temperature in some LiTaO₃-based ferroelectric ceramics // J. Sol. State Chem.- 1987.- 68.- P. 247.
- Yasuyoshi Torii, Tadashi Sekiya, Tetsuo Yamamoto e. a. Preparation and properties of LiTaO3-based solid solutions with cation vacancies // Mat. Res. Bull.- 1983.-18.- P. 1569
- 18.— P. 1569.
 15. Guenais B., Baudet M., Miner M., Le Gun M. Phase equilibria and Curie temperature in the LiNbO₃ xTiO₂ system, investigated by DTA and X-ray diffraction # Mat. Res. Bull.— 1984.— 16.— P. 643.
 16. Kawakami S., Ishii E., Tsuzuku A. e. a. Some properties and crystal growth of Zn-substituted LiNbO₃ solid solution # Mat. Res. Bull.— 1986.— 25.— P. 463.
 17. Burns W. K., Bulmer C. H., West E. J. Application of Li₂O compensation techniques to Ti-diffused LiNbO₃ planar and channel waveguides # Appl, Phys. Lett.— 1978.— 33. N. 4.— P. 70.
- 33. N 1.- P. 70.
- Carruthers J. R., Peterson G. E., Grasso M. Nonstoichiometry and crystal growth of lithium niobato // J. Appl. Phys. 1971. 42, N 5. P. 1846.

Поступила в редакцию 19 февраля 1990 г.

27