Таким образом, нами предложена модель ассоциативной намяти с несимметричной матрицей для троичной системы счисления и оптическая схема для ее реализации на основе жидкокристаллического модулятора и бихроматического источника света.

- -

список литературы

- Кохонен Т. Ассоцнативная намять. М.: Мир, 1980.
 Норfield J. J. Neural networks and physical systems with emergent collective computational abilities // Proc. Natl. Acad. Sci. USA. 1982. 79. P. 2554.
 Farhat N., Psaltis D., Prata A., Pack E. Optical implementation of the Hopfield model // Appl. Opt. 1986. 24, N 10. P. 1469.
 Карцев М. А. Арифметика цифровых мании. М.: Наука, 1969.
 Воеподкин Г. Г., Дианов Е. М., Кузнецов А. А., Нефедов С. М. Символьная подстановка и элемент Фредкина на основе структуры МДП ЖК // Автометрия. 1989. № 3.
- 1989.- № 3. 6. Сивуха В. И., Редько В. П. Модель ассоциативной намяти па мультистабильных элементах // Весці Акадэміі павук БССР. 1989. № 4. 7. Gindi G. R., Gmitro A. F., Parthasarathy K. Hopfield model associative memory with
- полгего-diagonal terms in memory matrix // Аррl. Орt.— 1988. 27.- Р. 129. 8. Воеводкин Г. Г., Дианов Е. М., Кузнецов А. А. и др. Обратная связь в устройствах на основе оптически управляемого пространственного модулятора // Квантовая электрон. 1988. 15, № 4.

Поступила в редакцию 19 января 1990 г.

¥AK 539.23 : 539.216 : 546.02

В. В. АТУЧИН, И. П. БОБКОВ, К. К. ЗИЛИНГ, А. Е. ПЛОТНИКОВ, В. П. СЕМЕНЕНКО, Н. В. ТЕРПУГОВ

(Новосибирск)

ХАРАКТЕРИСТИКИ ОПТИЧЕСКИХ ВОЛНОВОДОВ Cs: КТЮРО4

Кристалл КТіОРО4 (КТР) представляет интерес для построения интегрально-онтических приборов благодаря своим высоким электроолтическим коэффициентам, низким диэлектрическим постоянным и отсутствию наведенных оптических неоднородностей [1]. В последние годы появились сообщения о том, что волноводные слои на основе КТР могут быть получены замещением части калия, содержащегося в кристалле, на рубидий, цезий или таллий с помощью ионного обмена в расилавах соответствующих нитратов [2, 3]. Однако имеющиеся в литературе сведения о свойствах таких волноводов носят крайне фрагментарный характер и фактически исчернываются оценками достижимых приращений показателей преломления, составляющих величины от ~0,02 (Rb, Cs) до ~0,2 (T1), и примерными значениями рабочих температур 320-450 °С, при которых процесс обмена идет достаточно активно.

Целью настоящей работы является определение физических величии, ответственных за оптические характеристики волноводов на основе Cs: КТР, в частности, устаповление количественной связи приращений показателей преломления с концентрацией легирующего элемента и оценка нараметров диффузии. Монокристаллы КТР были выращены с помощью модифицированного метода Чохральского из растворарасплава на основе K₂O - P₂O₅ - TiO₂ [4]. Эксперимент проводился на подложках Z-среза с показателями премомления: $n_x = 1,7626$; $n_y = -1,7716$; $n_z = 1,8653$. Иопный обмен осуществлялся в расплаве CsNO₃ при температуре 430 ± 5 °C в течение времени $t_0 = 1 - 4$ ч. Показатели преломления подложек и эффективные ноказатели волповодных мод измерялись в условиях призменного ввода. В качестве эталопа использовались призма из SrTiO₃ с $n=2,3887\pm$ ± 0,0002. Все оптические измерения проводились на длине волны света λ = 0,6328 мкм. Профили приращений показателей преломления $\Delta n(x)$ восстанавливались с помощью обратного BRE-метода [5, 6]. Концентрация Св и К в приповерхностном слое кристалла опре-

52

Рис. 1. Профили $\Delta n(x)$ волновода, полученного при $t_0 = 2$ ч; $1 - \Delta n_x; \ 2 - \Delta n_y; \ 3 - \Delta n_z$

Рис. 2. Зависимости от Δn_z : $1 - \Delta n_x$; $2 - \Delta n_y$ ($\cdot - \Delta n$ для вояновода, полученного при $t_0 = 2$ ч; + - Δn при $t_0 = 4$ ч)

делялась методом рентгеноспектрального анализа, в качестве эталонов использовались кристаллы CsNO₃ и KTiOPO₄ соответственно.

На рис. 1 представлены профили $\Delta n(x)$ возновода, полученного при t₀ = 2 ч. Число мод составляло 8,7 и 6 для направлений электрического вектора световой волны вдоль осей Х, У и Z. Из приведенных кривых видно, что $\Delta n_x > \Delta n_y > \Delta n_z$ в отличие от результата работы [3], в которой утверждается равенство Δn для всех трех ноказателей преломления при фиксированной концентрации Cs.

В [2] для системы Rb: КТР было отмечено существенное различие в нараметрах волноводов, полученных на Z(+)- и Z(-)-плоскостях. Проверка показала, что в системе Cs: КТР данный эффект не наблюдается.

Как показано на рис. 2, приращения показателей преломления в волноводных слоях Cs: КТР связаны между собой липейной зависимостью, причем $\Delta n_x : \Delta n_y : \Delta n_z = 1,55 : 1,25 : 1$. Из пропорциональности Δn друг другу следует, что функции, связывающие Δn с содержанием цезня, имеют идептичный вид для всех трех показателей преломления и отличаются лишь постоянным множителем.

С целью определения конкретного вида функции, связывающей Δn с мольной долей цезия y, один из волноводов был подвергнут дополнительному отжигу при 500 °C в течение t = 1 ч. Соответствующие профили $\Delta n_x(x)$ представлены на рис. 3. Проведенный анализ показал, что при существенном изменении распределения Cs по глубине площадь под профилем Δn сохраняется, и, следовательно, приращения показате-

a — после обмена при $t_0 = 1$ ч; $---- = \Delta n_{\chi}$ (х), восстановленный 0,02с помощью метода [5]; - - - анпровенмация профиля $\Delta n_{\infty}(\mathbf{x})$ экспонентой; б -- после дополнительного отжига при 500 °C в течение t = 1 ч: $-\Delta n_x (t, x), 0,07$ определенный методом [5]; *-- Δn_{x} (t, x), полученный методом [6]; ——— — Δn_x (t, x), соответствующий решению диффузионной зацачи

 x_{j} 53

лей преломления в системе Cs: КТР пропорциональны содержанию цезия. Соответствующие выражения запишутся в виде $\Delta n = Ay$, где A — постоянный для данного показателя преломления коэффициент.

Коэффициенты A определялись из сопоставления $\Delta n(0)$ и величины y на поверхности волновода. С целью снижения ошибки для измерений использовался образец, ранее подвергнутый дополнительному отжигу и имеющий минимальное изменение содержания Сs в поверхностном слое, анализируемом с помощью рентгеноспектрального анализа. Концентрация Cs составила 2,8 мол. %, причем введение цезия в КТР сопровождалось соответствующим снижением содержания калия. Вычисленные коэффициенты имели следующие значения: $A_x = 0,16$; $A_y = 0,13$; $A_z = 0,10$; следует отметить, что ошибка их определения, составляющая величину ~10 %, в основном связана с разбросом в значениях $\Delta n(0)$, полученных с помощью различных вариантов ВКБ-метода [5, 6].

Как известно, изменение показателей преломления в сегнетоэлектриках может быть представлено в виде суммы трех вкладов: за счет непостоянства молекулярной рефракции R, члена, связанного с вариациями споптанной поляризации при легировании, и вклада упругооптического эффекта [7]. Рефракционный вклад в коэффициент Aдля случая $\Delta n \ll n$ можно записать в виде [8]

$$A^R = \frac{(n^2+2)^2}{6nV} \frac{\Delta R}{\dot{y}},$$

где V — мольный объем КТР; n — среднее значение его показателей преломления; ΔR — изменение рефракции при легировании.

С учетом результатов рентгеноспектрального анализа можно предположить, что химическая формула твердого раствора имсет вид $Cs_vK_{1-v}TiOPO_4$. Тогда, используя приведенные в [9] значения рефракций окислов $R(K_2O) = 11,2$ см³ и $R(Cs_2O) = 20,5$ см³, получим $A^R =$ = 0,18. Вычисление двух других вкладов не представляется возможным ввиду отсутствия в литературе необходимых данных об изменении параметров решетки и спонтанной поляризации в системе Cs: КТР при различных уровнях легирования. Из сопоставления величины A^R и экспериментально определенных выше значений A видно, что, во-первых, приращение показателей преломления при легировании КТР цезием в основном происходит благодаря увеличению рефракции; во-вторых, сумма двух других вкладов отрицательна. Последнее, с учетом имеющей обычно место малости упругооптического члена, по-видимому, свидетельствует о возрастании спонтанной поляризации при введении Cs в КТР.

Для волноводных слоев типа Rb: КTP, полученных в условиях, близких к используемым в настоящей работе, показано в [2], что распределение Rb по глубине описывается комплементарной функцией ошибок, т. е. соответствует модели диффузии при постоянной концентрации диффузанта на поверхности. В нашем случае профили $\Delta n(x)$ и, следовательно, профили распределения Cs по глубине описываются функцией, близкой к экспоненте, что может определяться либо непостоянством граничных условий, возможным, когда время нагрева до рабочей температуры (~1 ч) сравнимо с t_0 , либо зависимостью коэффициента диффузии \mathcal{D} от концентрации Cs. Проверим правомерность последнего предположения.

Задача диффузии в полубесконечной среде нри начальном распределении диффузанта в виде экспоненты и постоянном \mathscr{D} может быть решена аналитически [10]. Если в качестве начального условия взять распределение примеси c(0, x), соответствующее аппроксимации профиля $\Delta n_x(x)$ в волноводе, сформированном при $t_0 = 1$ ч, в виде $\Delta n(0, x) = \Delta n_x(0, 0) \exp(-0.33x)$, то, как видно из рис. 3, распределение c(t, x), соответствующее экспериментально определенному профилю $\Delta n_x(t, x)$ в том же образце после дополнительного отжига при 54 500 °С в течение t = 1 ч, может быть получено при $\mathcal{D} = 0.24 \cdot 10^{-9}$ см²/с, что свидетельствует о независимости D от уровня легирования при достигнутых концентрациях Cs.

центрациях ~3 мол.% является постоянной величиной и при э00 с равен 0,24 · 10-9 см²/с.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bierlein J. D., Arweiler C. B. Electro-optic and dielectric properties of $KTiOPO_4$ //
- Deriviti J. D., Arwener C. D. Electro-optic and dielectric properties of K10P04 // Appl. Phys. Lett. 1986. 49, N 15. P. 917.
 Bierlein J. D., Ferretti A., Brixner L. H., Hsu W. Y. Fabrication and characteriza-tion of optical waveguides in KTiOPO4 // Appl. Phys. Lett. 1987. -- 50, N 18. --P. 1910

- 10.1. 10. орносы waveguides III Кногод // Аррі. Риуз. 2006. 1301. 50, № 16. Р. 1216.
 3. Bierlein J. D., Vanherzeele H. Potassium titanyl phosphate: properties and new applications // JOSA. В. 1989. 6, № 4. Р. 622.
 4. Александровский А. Л., Ахманов С. А., Дьяков В. А. и др. Эффективные ислипейно-оптические преобразователи на кристаллах калий титанил фосфата // Квантовая электрон. 1985. 12, № 7.
 5. Шанькин В. Г., Ичелкин В. Ю., Шашкин В. В. О применении ВКБ-метода для определения профиля показателя преломления в плоских диффузионных волноводах // Квантовая электрон. 1977. 4. № 7.
 6. Колосопский Е. А., Истров Д. В., Царев А. В. Численный метод восстановления профиля показателя преломления диффузиых волноводов // Квантовая электрон. 1981. 8, № 12.
 7. Ацеский V. V., Ziling C. C., Shipilova D. P., Beizel N. F. Crystallographic, ferroelectric and optical properties of TiO₂-doped LiNbO₃ crystals // Ferroelectrics. 1989. 10. P. 261.
 8. Зилинг К. К., Падолиный В. А., Шашкин В. В. Диффузия титана в LiNbO₃ и ее
- 1969.— 100.— Г. 201.
 Зилинг К. К., Падолинный В. А., Шашкин В. В. Диффузия титана в LiNbO₃ и ее влияние на оптические свойства // Неорг. материалы.— 1980.— 16, № 4.
 Бацанов С. С. Структурная рефрактометрия.— М.: Высш. шк., 1976.
 Карслоу Г., Егер Д. Теплопроводность твердых тел.— М.: Наука, 1964.

Поступила в редакцию 19 февраля 1990 г.