СРЕДЫ ДЛЯ ОПТИЧЕСКОЙ ПАМЯТИ

УДК 535.215.12: 537.226.33

И. Ф. Канаев, В. К. Малиновский

(Новосибирск)

МЕХАНИЗМЫ УСИЛЕНИЯ СЛАБЫХ ПУЧКОВ ПРИ ЗАПИСИ ПОЛЯРИЗАЦИОННЫХ И СКАЛЯРНЫХ ГОЛОГРАММ В Linbo₃

Приведены новые экспериментальные данные, существенно противоречащие развиваемым в последнее время представлениям о записи голограмм в пучках с перпендикулярными поляризациями. Например, в LiNbO₃: Си наблюдается лишь нестационарное усиление слабых пучков, причем усиление претерпевают как обыкновенные, так и необыкновенные световые волны. Представлена новая схема анализа нестационарного усиления слабых когерентных пучков. Показано, что эксперименты по записи голограмм в пучках с параллельными и перпендикулярными поляризациями бъясняются в рамках несдвиговых (локальных) механизмов записи. Найден явный вид уравнения световой (и голографической) решетки для стационарного осстояния $I = I_{01} + I_{02} + 2\sqrt{I_{01}I_{02}}\cos(k_2 + 2k_x)R$. Вектор стационарной решетки $k^* = k_z + 2k_x$ является суммой векторов, соответственно отражающих периодичность распределения интенсивности, связанную с интерференцией и дифракцией.

В последние годы обращено внимание на то, что в фоторефрактивных материалах типа LiNbO₃ осуществляется многократное (свыше 10³) усиление слабых когерентных пучков при записи так называемых поляризационных (П) голограмм. Запись П-голограмм производится световыми пучками с ортогональными поляризациями. При такой ориентации поляризаций скалярная интерференция, как известно, отсутствует. Однако периодическая переменная не исчезает, ею является пространственное распределение результирующей поляризации. До недавних пор запись П-голограмм объяснялась наличием зависимости наводимых изменений показателя преломления Δn от поляризации света. В сегнетоэлектриках, в частности в LiNbO₃, Δn определяется фотонаведенными электрическими полями E ($\Delta n_i = r_{ij}E_j$), которые генерируются фотогальваническими ($\Phi\Gamma$) токами j_{Φ} [1]. Широко распространилось мнение, что j_{Φ} связан с направлением поля \tilde{E} световой волны (и соответственно с поляризацией е = $\tilde{E}/|\tilde{E}|$) [2]:

$$\mathbf{j}_{\mathbf{b}} = \boldsymbol{\beta}_{ijk} \widetilde{\mathbf{E}}_j \widetilde{\mathbf{E}}_k. \tag{1}$$

Усилению слабых пучков в рамках феноменологического описания (1) посвящено значительное количество работ. Принцип усиления оказывается таким же, как и при диффузионном механизме записи [3]. Он основан на сдвиговом характере записи голограмм: максимумы распределений Δn и *I* (или в данном случае Δn и интенсивности результирующей поляризации) сдвинуты на $\pi/2$.

В работах [4, 5] описан новый принцип записи П-голограмм, который может осуществляться в любых фоторефрактивных средах. В объяснениях принимается во внимание известный, но мало учитываемый факт, что облучение таких материалов когерентным светом сопровождается фотоиндуцированным рассеянием (ФИРС) пучков. Поляризация лучей рассеяния имеет и

Nº 4

1992

не равные нулю составляющие на направления поляризаций исходных пучков. В результате между исходными (k_1, k_2) и рассеянными (k_p) световыми волнами оказывается возможной скалярная интерференция. Кроме того, из-за одновременного взаимодействия трех волн k_1 , k_2 , k_p при некоторых направлениях k_p обеспечивается существование дополнительной скалярной интерференционной решетки с вектором \tilde{k}_{12} , равным вектору k_{12} , задаваемому исходными световыми волнами $\tilde{k}_{12} = k_1 - k_2$. Дифракционная связь между облучающими пучками осуществляется двухступенчато через решетки $k_{1p} =$ $= k_1 - k_p$, $k_{2p} = k_2 - k_p$, а также непосредственно через дополнительную решетку \tilde{k}_{12} . Согласно этой модели, запись П-голограмм следует рассматривать как одну из характеристик явления ФИРС. Опытные факты, как противоречащие, так и используемые в качестве подтверждающих справедливость описания (1), объяснены на основе ФГ-тока с более низкой, чем (1), симметрией: $j_{\phi} = G \kappa I c$ (с — единичный вектор, параллельный оси спонтанной поляризации).

Касаясь вопроса, какой из механизмов отвечает реальным процессам, отметим следующее. Ток (1), исходя из модельных представлений [2], имеет неомическую, относительно новую в физике твердого тела природу. Этот ток с какой-то степенью однозначности можно связать с наблюдаемым в случае, когда модельные следствия не только подтверждаются, но и не нарушаются. Нарушений в экспериментах обнаруживается много, но в работах, доказывающих, а также берущих за основу (1), они не только не обсуждаются, но и не упоминаются. В связи с этим следует подчеркнуть некоторую необоснованную тенденциозность этих работ в выборе экспериментальных доказательств и постановке опытов: опыты проводятся лишь в условиях тех ориентаций, где теория предсказывает положительный результат; из опытов, в которых видны и однозначно противоречивые характеристики, используются только фрагменты, согласующиеся с модельными представлениями. С неодиночными примерами отличия характеристик реального явления в LiNbO₃ от модельноэкспериментального, описанного в этих работах, можно ознакомиться, например, в [4-8]. Кратко напомним о некоторых из них: прямые измерения ФГ-тока указывают на его существование в условиях, запрещенных выражением (1) [7]; пиро- и ФГ-токи обнаруживают одинаковые зависимости от поляризации света несмотря на то, что первый, как известно, не описывается тензором третьего ранга; запись поляризационных и неполяризационных высокоэффективных голограмм осуществляется в условиях, как разрешенных, так и запрещенных ФГ-тензором β_{ijk} [7]. В настоящей работе на примере LiNbO3 : Си будет показано, что стационарного усиления слабых пучков обыкновенной (e^o) поляризации не происходит, как это объясняется в моделях, привлекающих циркулярные токи, входящие в (1); имеется лишь нестационарное (т. е. кратковременное) усиление слабых пучков, причем как е^о-, так и ес-поляризаций. Принимая во внимание существующее мнение о высоком уровне физического и математического совершенства и законченности модели ФГ-эффекта с феноменологическим описанием (1), можно считать, что редкое, фрагментарное совпадение с экспериментальными характеристиками в LiNbO3 указывает на ее неприменимость к описанию процессов в этом кристалле.

В настоящей работе будут приведены дополнительные к данным публикаций [4, 5] характеристики записи П-голограмм в LiNbO₃: Cu. Будет показано, что результаты опытов объясняются в рамках несдвиговых (с локальным откликом) механизмов записи. Усиление слабых пучков связано с высокой эффективностью нестационарных голограмм.

Эксперименты. В опытах наблюдается сильное различие голографических характеристик в тонких $(h\Delta n_m \leq \lambda)$ и толстых $(h\Delta n_m > \lambda)$ образцах $(\Delta n_m - \lambda)$

максимально достижимое Δn). С целью выяснения этих различий исследования проведены на образцах разной толщины *h*. Исследовались кристаллы

88

У-среза, легированные Cu (0,1 вес. %; h = 0,3 и 1 мм; обозначим их как Cu_{0,3} и Cu₁). Для сравнения будут приведены кратко и некоторые данные, полученные на образцах, легированных Fe (0,1 вес. %; h = 0,25 и 0,6 мм; Fe_{0,2}, Fe_{0,6}).

Известно, что усиление слабых пучков возможно как при сдвиговых, так и при несдвиговых механизмах записи. Их вклады можно определить по временным характеристикам: в первом случае максимум усиления достигается на стационарной стадии записи; во втором — усиление должно быть нестационарным. В некоторых случаях удобнее использовать пучки одинаковой интенсивности: наличие сдвиговой компоненты записи должно отразиться на перекачке интенсивности в один из пучков. Нами проведены эксперименты при одинаковых и разных интенсивностях облучающих пучков. В опытах применястся стандартная, симметричная, двухпучковая схема записи элементарных голографических решеток. В качестве координат используются кристаллофизические оси X, Y, Z. Экспериментальные значения эффективности η^* получены на основе соотношения $\eta^* = I_h/(I_h + I_i)$. Здесь I_h и I_i — интенсивности нулевого и первого порядков дифракции на выходе из кристалла.

I. Условия опытов: пучки на входе в кристалл одинаковой интенсивности $I_{01} = I_{02}$; векторы поляризаций (e_i) пучков параллельны e₁ || e₂; вектор записываемой решетки (k₁₂ = k₁ - k₂, k_i — волновой вектор) параллелен оси Z, k₁₂ || Z.

На тонких образцах (Fe_{0,2} и Cu_{0,3}) голографические характеристики аналогичны тем, которые приведены в [6, 7] для кристаллов с относительно большим (≥ 0,1 вес. %) содержанием Fe: при облучении обыкновенными (е[°])

волнами интенсивность ФИРС I^{ρ} не превышает 5 %; между пучками не наблюдается перекачки энергии; η^* достигает тех максимальных значений, которые следуют из формулы Когельника и измеренных значений Δn . Например, для образца Си_{0,3} величина $\hbar\Delta n_m$ для е^o-волны равна 1,2 λ^o и η^* во времени проходит через максимум, равный 0,94. Данные по перекачке, согласно [6, 7], отвечают несдвиговому механизму записи.

Образец Си_{0,3} для необыкновенной (e^c) волны является толстым ($h\Delta n_m \approx 2,5\lambda^c$): суммарная интенсивность $I_1(t) + I_2(t)$ проходящих через образец пучков падает в процессе облучения более чем в 2 раза; η^* не имеет того колебательного характера во времени, которое следовало ожидать, исходя из ее синусоидальной связи с $\Delta n(t)$, определяемой формулой Когельника (что выполнялось при облучении e^o-волнами); η^* в переходный период времени и в равновесном состоянии не превышает значений 0,5—0,7. Аналогичные характеристики только с еще большим (в 5—10 раз) падением суммарной интенсивности наблюдаются и на толстых образцах Сu₁ и Fe_{0,6}, но уже для волн и e^o-, и e^e-поляризаций. Видно, что режим самосогласованной записи к считывания при переходе к толстым кристаллам претерпевает изменения.

II. $I_{01} \approx I_{02}$; $\mathbf{e}_1 \perp \mathbf{e}_2$ ($\mathbf{e}_1 = \mathbf{e}^\circ$; $\mathbf{e}_2 = \mathbf{e}^\circ$); $\mathbf{k}_{12} \perp \mathbf{Z}$. В тонком образце $Fe_{0,2}$ запись не осуществляется. Она малоэффективна и в $Cu_{0,3}$: для \mathbf{e}^ϵ -волны этот образец является сильнорассеивающим (до 50—60 %), но при одновременном облучснии \mathbf{e}° - и \mathbf{e}^ϵ -волнами с равными интенсивностями рассеяние оказывается слабым (менее 3—5 %); эффективность с поворотом поляризации η_{eo}^* не превышает значений 0,05.

В образце Си₁ запись высокоэффективна: η_{eo}^* в процессе облучения проходит полный период, т. е. переходит через первый максимум ($\approx 0,9$) и достигает первого минимума. Данный факт проверяется при стирании записи одним из записывающих лучей: $\eta_{eo}^*(t)$ при этом вновь проходит через максимум. При некоторых соотношениях интенсивностей пучков удастся достичь режима, когда в равновесном состоянии η_{eo}^* близка к единице, т. е. наблюдается полная взаимная перекачка проходящих световых пучков: выключение волны

7 Автометрия № 4, 1992 г.

89

7

and the second second

 e° на входе в кристалл вызывает исчезновение на выходе волны e° , и наоборот. Интерференционного усиления и гашения, свойственного сдвиговым голограммам, не обнаруживается.

В области соотношений интенсивностей $I_{oi}^{e} \geq I_{oj}^{o}$ наблюдается своеобраз-

ный эффект усиления интенсивности прошедшего через кристалл (Cu1) света:

$$I_1^o(t,h) + I_2^e(t,h) + I^p(t,h) > I_1^o(o,h) + I_2^e(o,h) + I^p(o,h).$$

Характерный пример развития I_i^e , I_j^o , η_{eo}^* во времени (при $I_{oi}^e = 2, 5I_{oj}^o$) приведен на рис. 1. По сравнению с исходными растут величины I_i^o и I^p , значение I_j^e падает. Некоторые детали процесса можно выяснить, изучая поведение $I_i^o(t, h)$ после перекрывания на входе волны e^e (рис. 2). Волна e^o при этом стирает записанные голограммы, и η_{eo}^* , релаксируя, вновь проходит через максимум. Из рисунка видно, что e^o -волна по интенсивности в 2 раза выше исходной $I^o(o, h)$, при этом $I^p(t, h)$ и $I_i^e(t, h)$ тоже не равны нулю. Нами наблюдалось трехкратное усиление суммарной интенсивности. Без подробного обсуждения сообщим, что подобное самоусиление связано с большим дихроизмом поглощения e^o - и e^e -волн ($\kappa^o = 80$, $\kappa^e = 50$ см⁻¹). Это довольно очевидно: e^o -волна при прохождении кристалла перекачивается на записанной решетке в волну e^e и снова в e^o , таким образом часть пути она пройдет с малопоглощающейся поляризацией.

Напомним [8], что в образце Cu₁ при облучении одной е^c-волной рассеяние достигает 90 % и более. При одновременном облучении е^c-, е^c-волнами оно меньше 10 %. В образце Fe_{0,6} рассеяние в стационарном состоянии не уменьшается; η^* обладает большой асимметрией: $\eta^*_{oc} > \eta^*_{eo}$ [4, 5]. Считывание зондирующим лучом с длиной волны, отличной от записывающей, показывает, что эффективность в образце Cu₁ сравнима со значением η^* , полученным на записывающей волне; в образце Fe_{0,6} она меньше меньшей из величин η^*_{oc} , η^*_{oo} . Эти факты указывают на то, что в образце Cu₁ эффективно записывается решетка \tilde{k}_{12} [4, 5], а в образце Fe_{0,6} — решетки k_{1p} , k_{2p} .

III. $I_{oi}^{o} \gtrless I_{oj}^{e}$; $\mathbf{e}_{1}^{o} \perp \mathbf{e}_{2}^{e}$; $\mathbf{k}_{12} \perp \mathbf{Z}$. В образце Сu₁ при большом различии интенсивностей облучающих пучков слабые пучки как \mathbf{e}^{o} -, так и \mathbf{e}^{e} -поляризаций испытывают усиление. Динамические и количественные характеристики развития слабых пучков близки (при одних и тех же отношениях интенсивностей слабой и сильной волн \mathbf{e}^{o} -волна усиливается в 1,5—3 раза больше, чем волна \mathbf{e}^{e}). Усиление нестационарно. Характерный пример развития

Рис. 1. Изменение интенсивностей пучков I_1^o, I_2^e на выходной грани образца Си₁ во времени;

 I_1^{σ} ($I_{02}^{\sigma} = 0$) получена при кратковременном выключении I_{02}^{σ} ; η – предположительная с учетом функционального развития $I_1^{\sigma}, I_2^{\sigma}$ дифракционная эффективность

 t_{n}

90

.

интенсивности слабой e° -волны во времени приведен на рис. 3. Выход на максимум происходит за время $t < \tau_{\rm M}$. Здесь $\tau_{\rm M}$ — характерное (максвелловское) время установления Δn_m ; оно определялось из зависимости Δn во времени при облучении образца одним сильным пучком. Равновесное состояние достигастся за время $t > \tau_{\rm M}$, при этом интенсивности пучков на выходе стремятся к исходным величинам.

Выделяются два интересных свойства. Выключение слабого пучка на начальной стадии усиления (в те моменты времени, когда его интенсивность на выходе из кристалла увеличилась вдвое и более) практически не отражается на характеристиках пучков на выходе из кристалла; они продолжают развиваться так же, как и в присутствии слабого исходного пучка. Выключение слабого пучка в моменты равновесного со-

91

стояния приводит к повторению процесса усиления, т. е. при включении и выключении слабого пучка наблюдается одно и то же явление с практически одинаковыми характеристиками. Эти опыты показывают, что слабый пучок лишь инициирует процесс усиления. С другой стороны, его присутствие в течение переходного периода приводит, очевидно, к созданию некой запоминающей стационарной голографической решетки, без которой невозможно повторение процесса усиления при выключении слабого пучка.

Приведем без подробностей еще ряд данных. Величина усиления зависит от абсолютных и относительных значений интенсивностей слабого и сильного пучков. Существует порог интенсивности слабого пучка, ниже которого усиления не происходит, он зависит от интенсивности сильного пучка. Например, при $I_{oi}^{e} = 1$ Bt/см² усиления e^{o} -волны не происходит в случае $I_{oi}^{o} \leq 10^{-3}$ Bt/см², максимальное усиление (≈ 100) достигалось при

 $I_{oj}^{\circ} \approx 5 \cdot 10^{-3} \, \mathrm{Bt/cm^2}$. Облучение образца Cu₁ пучком е^e-поляризацич характеризуется сильным (до 90 %) стационарным рассеянием, при е^o-поляризации рассеяние в стационаре практически отсутствует [8]. При одновременном облучении с ростом различия исходных интенсивностей рассеяние в значительной мере начинает определяться сильным пучком. Это и дихроизм поглощения, очевидно, и обусловливают некоторые различия характеристик слабых e^o- и e^e-волн (порогов и абсолютных величин усиления и т. д.). Подчеркнем, что на образце Cu₁ явления интерференционного гашения и усиления имеются, но они заметно проявляются в области небольшого (5—10 раз) диапазона различий интенсивностей облучающих пучков. Их проявление сильнее на переходной стадии процесса.

Модель усиления слабых пучков. Из описания механизмов ФИРС [8] и записи П-голограмм [4, 5] следует, что рассеянный свет можно рассматривать как световую волну со сложными временными и пространственными характеристиками. При развитии ФИРС изменения происходят и в облучающих пучках. Несмотря на сложные характеристики взаимодействующих волн (k_1 , k_2 , k_p), записанные ими решетки обладают теми же свойствами сдвиговых и несдвиговых голограмм, которые присущи решеткам, записанным однородными световыми пучками. Эти свойства во многом не зависят и от механизмов изменения Δn . В связи с этим можно искать объяснения экспериментальным фактам, не привлекая процессов протекания $\Phi\Gamma$ -тока и Φ ИРС. Мы не будем учитывать процессы, связанные с решетками k_{1p} , k_{2p} , а рассмотрим только явления, связанные с дополнительной решеткой \tilde{k}_{12} [4, 5]. Согласно [4, 5], последняя обусловлена скалярной интерференцией и $\tilde{k}_{12} = k_{12}$, следовательно,

для упрощения можно анализировать запись в пучках с параллельными поляризациями.

Кратко перечислим результаты анализа усиления слабых пучков (при е₁ II е₂) обзорной работы [9]. Стационарное решение для интенсивностей I_{1,2} пучков, проходящих через фоторефрактивный образец, и разности фаз ψ между ними в случае сдвигового механизма записи имеет вид

$$\frac{\partial I_{1,2}}{\partial x} = \pm \frac{k_o^2}{k_z} a \tau I_1 I_2 \sin \psi; \quad \frac{\partial \psi}{\partial x} = 0.$$
⁽²⁾

Это уравнение указывает на существование перекачки интенсивности между взаимодействующими пучками и на возможность стационарного усиления слабых пучков. При несдвиговом механизме аналитическое решение затруднено. Оно имеется при условии $\Delta n = \alpha I$ в случае мгновенного отслеживания Δn за интенсивностью:

$$\frac{\partial I_{1,2}}{\partial x} = 0; \qquad \frac{\partial \psi}{\partial x} = \frac{k_o^2}{k_z} \varepsilon_2 \frac{I_1 - I_2}{\sqrt{I_1 I_2}}.$$
(3)

Это же решение справедливо для стационарного состояния в инерционных средах, в которых Δn достигает насыщенного состояния за некоторое время τ . Из (3) следует, что в стационарном состоянии усиления пучков не происходит, имеется только перекачка фазы. Последнее показывает, что стационарное интерференционное поле оказывается наклоненным относительно исходного (задаваемого пучками Io1, Io2). Нестационарное усиление объясняется следующим образом. Из-за инерционности записи наклон интерференционного поля устанавливается не мгновенно. В переходный период времени между интерференционным полем I(t) и решеткой $\Delta n(t)$ есть фазовый сдвиг. Он в соответствии с (2) и приводит к усчлению одного из пучков. Из-за однозначности знака ψ усиливаемым всегда является слабый пучок. Нам кажется, что данная выше интерпретация нестационарного усиления недостаточно физична. Справедливей считать иначе: усиление слабого пучка является причиной фазового сдвига.

Рассмотрим подробнее вопрос нестационарного усиления, применив элементарные, но более наглядные физические принципы. Нам следует выяснить такие, непонятные с точек зрения изложенных в литературе моделей результаты, как продолжение процесса усиления или его возобновление при прерывании слабого пучка, отсутствие или слабое усиление при небольших абсолютных значениях интенсивностей исходных пучков и др.

Интерференционное поле представляется в виде суммы членов, учитывающих взаимодействие каждого пучка с каждым пересекающимся с ним:

$$I = \sum_{i} I_{i} + \sum_{i,j} \sqrt{I_{i}I_{j}} \mathbf{e}_{i} \mathbf{e}_{j} \cos(\mathbf{k}_{i} - \mathbf{k}_{j}) \mathbf{R}.$$
 (4)

Это дает возможность рассматривать участие каждой пары пучков в записи голограмм отдельно. Два исходных световых пучка задают световую решетку, описываемую членом $J_{12} = 2\sqrt{I_{01}I_{02}} \cos k_{12} R$. В начальный момент облучения, очевидно, записывается только одна голографическая решетка с вектором k₁₂. Она при условии линейной связи ∆n и I будет записываться либо до насыщения (например, на входе в кристалл), либо до тех пор, пока не возникнут члены, компенсирующие J_{12} .

При возникновении решетки Δn в направлении каждого из облучающих пучков будут распространяться две волны. Одна из них, основная, - проходяшая волна нулевого порядка, ее интенсивность можно записать в виде $I = I_{01}(1 - \eta)$, другая — волна, дифрагированная из второго пучка: $I = I_{02}\eta$. В результате дифракции в (4) появляются новые интерференционные члены $J_{12}, J_{12}'', J_{11}', J_{22}',$ представляющие соответственно взаимодействие основных, дифрагированных и каждого из основных с дифрагированным из него пучков.

Их амплитуды соответственно равны $(1 - \eta)\sqrt{I_{01}I_{02}}$, $\eta\sqrt{I_{01}I_{02}}$, $I_{01}\sqrt{(1 - \eta)\eta}$, $I_{02}\sqrt{(1 - \eta)\eta}$.

Различия для сдвигового (на $\pi/2$) и локального механизмов записи заключаются в неодинаковом фазовом сдвиге между основной и дифрагированной из другого пучка волнами. Он равен $\pm \pi$ для первого и $\pm \pi/2$ для второго механизмов. Элементарную голографическую решетку, как известно, можно представить в виде набора параллельных отражающих плоскостей. Величину и знак фазового сдвига можно выяснить, исходя из законов отражения. Различие фаз между волнами в $\pm \pi$ приводит к интерференционному усилению и гашению интенсивностей облучающих пучков. Баланс интенсивностей при взаимодействии пучков на сдвинутой на $\pi/2$ однородной решетке можно записать в виде

$$I_{1} = I_{02}\eta + I_{01}(1-\eta) \pm 2\sqrt{I_{01}I_{02}\eta(1-\eta)},$$

$$I_{2} = I_{01}\eta + I_{02}(1-\eta) \mp 2\sqrt{I_{01}I_{02}\eta(1-\eta)}.$$
(5)

На несмещенной решетке интерференционного усиления не происходит, интенсивности просто складываются:

$$I_1 = I_{02}\eta + I_{01}(1-\eta), \quad I_2 = I_{01}\eta + I_{02}(1-\eta).$$
 (6)

Рассмотрим динамику записи в среде с локальным инерционным откликом. В начальный момент облучения в соответствии с членом J_{12} будет записываться однородная несдвинутая голографическая решетка $k_{12}^{(0)}$. Как бы ни была мала величина $\eta^{(0)}$, в начальные моменты времени из (б) следует, что слабый пучок (пусть $I_{01} > I_{02}$) будет испытывать голографическое усиление, его интенсивность оказывается равной

$$I_2 = I_{02} + (I_{01} - I_{02})\eta.$$
⁽⁷⁾

Используя простые законы отражения, можно показать, что появление дифрагированных на решстке $k_{12}^{(0)}$ пучков приведет к перестройке интерференционного поля:

$$J = J_{12} + J_{12}'' + J_{11}' + J_{22}' = \sqrt{I_{01}I_{02}} \cos k_{12}^{(0)} \mathbf{R} + (I_{01} - I_{02})\sqrt{\eta^{(0)}(1 - \eta^{(0)})} \sin k_{12}^{(1)} \mathbf{R}.$$
(8)

Мы видим, что интерференционный член, формируемый исходными пучками, сохраняется (теперь он представлен суммой $J_{12} + J_{12}'')$; появляется дополнительное поле, сдвинутое относительно исходного на $\pi/2$ ($J_{11}' + J_{22}'$). Из (8) следует, что при равных интенсивностях, входящих в образец пучков ($I_{01} = I_{02}$), интерференционное поле остается постоянным. Амплитуда сдвинутой свстовой решетки, вектор которой в (8) обозначен через $k_{12}^{(1)}$ ($k_{12}^{(1)} \equiv k_{12}^{(0)}$), как следует из (8), зависит от $\eta^{(0)}$ и поэтому меняется с глубиной. В начале облучения $\eta^{(0)}$ максимальна в конце кристалла, т. е. у выходной грани. В этой области одинаковая конкурентная способность к записи сдвинутой ($k_{12}^{(1)}$) и исходной ($k_{12}^{(0)}$) световых решеток наступит к моменту времсни, когда коэффициенты обоих членов в (8) сравняются, т. е.

$$\sqrt{I_{01}I_{02}} = (I_{01} - I_{02})\sqrt{\eta^{(0)}(1 - \eta^{(0)})}.$$
(9)

Пренебрегая малой величиной Іог в правой части, получим

$$\eta^{(0)} \approx I_{02}/I_{01}.$$
 (10)

Подставляя это значение в (7), найдем, что к рассматриваемому моменту интенсивность слабого пучка увеличивается не менее чем в 2 раза (изменится в соответствии с формулами сложения двух синусоид и фаза световой волны

слабого пучка). Появление сдвинутой решетки $\Delta n^{(1)}$ (с эффективностью $\eta^{(1)}$) приведет к дополнительной перестройке. Интерференционное поле с учетом дифракции пучков на решетке $k_{12}^{(1)}$ будет иметь вид

$$J = 2\sqrt{I_{01}I_{02}} \cos k_{12}^{(0)} \mathbf{R} + (I_{01} - I_{02}) + I_{12}^{(0)} (1 - \eta^{(0)}) \sin k_{12}^{(1)} \mathbf{R} - (I_{01} - I_{02}) \sqrt{\eta^{(1)}(1 - \eta^{(1)})} \cos k_{12}^{(2)} \mathbf{R}.$$
 (11)

Здесь появилось поле, противофазное исходному. При определении результирующего поля в моменты времени, когда начинает существенно расти $\Delta n^{(1)}$, необходимо учитывать следующие обстоятельства. Решетка $k^{(1)}$ является сдвиговой относительно исходных пучков, и последние должны испытывать на ней, кроме голографического, интерференционное усиление (и гашение). Знак сдвига, а соответственно усиление или гашение при отражении определяются поляризацией пучков (он разный для *P*- и *S*-поляризаций), разностью интенсивностей и углом падения на отражающие плоскости, а также знаком Δn . Рассмотрение разных ситуаций показывает, что интерференционное гашение всегда испытывает слабый пучок.

Следует подчеркнуть, что интерференционное усиление (в соответствии с (5)) существенно асимметрично по отношению к слабому и сильному пучкам. Чтобы полностью перекачать сильный пучок в слабый, необходимо η сравнять с единицей. Обратная перекачка требует малых величин η . Это можно найти, приравняв I_2 в (5) нулю:

$$(I_{01}\eta - I_{02}(1-\eta))^2 = 0, \quad \eta \simeq I_{02}/I_{01}. \tag{12}$$

Возможность усиления слабых пучков при сдвиговом механизме записи основана на том, что при дифракции на записываемой решетке не добавляется новых световых решеток (типа $k_{12}^{(1)}$...), изменяется лишь амплитуда исходного интерференционного поля. Это позволяет в толстых кристаллах достичь значений η , близких к 1. При этом весь свет перекачивается в направлении слабого пучка и в области, где существует только один пучок, интерференционное поле отсутствует. Направление перекачки определяется свойствами среды (направлением перемещения зарядов, их знаком, знаком электрооптического коэффициента).

При локальном механизме записи сдвинутая решетка $k_{12}^{(1)}$ тоже осуществляет направленную (интерференционную) перекачку, но направление связано не только со свойствами среды, но и с разностью интенсивностей взаимодействующих пучков. При этом механизме происходит интерференционная перекачка слабого пучка в сильный и голографическая из сильного в слабый.

Исходная слабая волна полностью перекачивается в сильный пучок при достижении $\eta^{(1)}$ величины, задаваемой (12). В области, где $\eta^{(1)} \ge I_{02}/I_{01}$, слабая

волна не участвует в построении интерференционного поля. Этот факт в уравнении поля (11) выражен в том, что световая решетка $2\sqrt{I_{01}I_{02}}\cos k_{12}^{(C)}R$ оказывается компенсирована, а начиная с некоторой глубины заменена противофазной решеткой $k^{(2)}$. Отсюда видно, что при локальном механизме отклика переходная стадия процесса записи характеризуется образованием световых и голографических решеток $k_{12}^{(0)}$, $k_{12}^{(2)}$, $k_{12}^{(2)}$, Каждой $k_{12}^{(i)}$ -решетке соответствует $k_2^{(i)}$ -световая волна (распространяющаяся в направлении исходной слабой волны), участвующая в ее создании. Отличие $k_2^{(i)}$ волны от предыдущей заключается в сдвиге фаз на $\pi/2$.

Стационарное состояние наступает, когда в каждой точке достигается насыщение (примем, что $\Delta n = \alpha I$). При этом, очевидно, должны выполняться те же причинно-следственные связи, что и на переходной стадии процесса: волна $k_2^{(\ell)}$ зарождается и формируется на голографической решетке $k_{12}^{(\ell-1)}$. с ее участием формируется световая и поддерживается запись голографической

решеток $k_{12}^{(i)}$; ослабление и полная перекачка волны $k_2^{(i)}$ происходят на голографической решетке $k_{12}^{(i+2)}$. Из этого делаем вывод, что стационарная голографическая решетка должна быть сложена с соответствующей упаковкой из ограниченных по толщине брэгговских решеток $k_{12}^{(i)}$; в силу связи $\Delta n = \alpha I$, распределения Δn и I должны совпадать.

Для дальнейшего анализа учтем имеющееся в литературе решение о Явный вид амплитуды и одного из слагаемых фазы находится из условий на входной поверхности, т. е. при x = 0.

Для нахождения явного вида J^* запишем интерференционное уравнение (11) как

$$J = 2\sqrt{I_{01}I_{02}}\cos k_{12}\mathbf{R} + 2\sqrt{I_{01}(I_{01}\delta)}(\sqrt{\eta\gamma_c}\sin k_{12}\mathbf{R} - \sqrt{\eta\gamma_n}\cos k_{12}\mathbf{R}).$$
(14)

При составлении уравнений (13) и (14) пренебрегается дифракцисй слабой волны и дифракционным ослабленисм сильной волны. В результате такой формализации исходные волны остаются постоянными. Этот факт в (14) отражен первым слагаемым. Второй член обусловлен только сильной волной, ее взаимодействием с волной дифрагированной. О произведении $\delta\eta\gamma$ можно говорить, как о результирующей эффективности. Выражение $I_{01}\delta$ равно интенсивности дифрагированной волны, а точнее, амплитуде интенсивности, так как дифракция является периодической функцией. Из условия постоянства амплитуды найдем $\delta = 4I_{01}/I_{02}$. В качестве η примем эффективность однородной решетки, выраженной формулой Когельника, а γ является коэффициснтом модуляции этой решетки в направлении поперек k₁₂:

$$\eta = \sin^2 Ax, \quad A = \pi \Delta n / (\lambda \cos Q),$$
 (15)

$$\gamma_c = \sin^2 A x, \quad \gamma_n = \sin A x \cdot \cos A x. \tag{16}$$

Таким образом, мы разложили наклонную однородную решетку J^* на три: однородную исходную и две с промодулированными по глубине амплитудами. Одна из последних — сдвиговая, другая — несдвиговая по отношению к исходной решетке. Как видно из физики построения интерференционных полей (9), (11), модуляция амплитуды решеток вдоль x вызвана периодичностью эффективности. Последняя, как видим, может аналогично интерференции участвовать в перераспределении интенсивности и соответственно создавать световые и голографические решетки. Эффективность также может быть выражена через волновой вектор k_s:

$$\mathbf{k}_{x} = \frac{\pi \Delta n}{\lambda \cos Q} = \frac{2\pi B \sqrt{I_{01} I_{02}}}{\lambda \cos Q} = \frac{2\pi}{\Lambda_{x}},\tag{17}$$

$$\mathbf{k}_z = \mathbf{k}_{12} = \frac{2\pi}{\lambda \sin Q} = \frac{2\pi}{\Lambda_z}.$$
 (18)

Подставляя (15)—(17) в (14), получим явное уравнение стационарного свето- вого поля:

$$I = I_{01} + I_{02} + 2\sqrt{I_{01}I_{02}} \left[\cos k_z R - 2(\sin^2 k_x R \cdot \cos k_z R - \sin k_x R \cdot \cos k_z R + \sin k_z R) \right] = I_{01} + I_{02} + 2\sqrt{I_{01}I_{02}} \cos(k_z + 2k_x) R.$$
(19)

Вектор стационарной решетки k^* оказывается суммой двух векторов ($k^* = k_z + 2k_z$), представляющих интерференционную и дифракционную свето-

вые решетки. Из (17), (18) можно найти угол наклона q стационарной решетки относительно исходной:

$$tgq = 2k_x/k_z = 2\Lambda_z/\Lambda_x = \Delta n tgQ = 2B\sqrt{I_{01}I_{02}}tgQ.$$
(20)

Он оказывается тем меньше, чем меньше наводимое Δn и угол схождения Q записывающих пучков.

Максимум эффективности стационарной решетки достигается на некоторой глубине кристалла x_m . Она, очевидно, равна толщине, на которой происходит полная компенсация (или гашение) исходной интерференционной решетки: $1 - 2\sin^2 k_x x_m = 0$, $x_m = \Lambda_x/2$. При $X > x_m \eta$ не зависит от толщины. В переходный период времени η может достигать значительно больших абсолютных значений. Оценим, например, величину эффективности $\eta^{(0)}$ решетки $k_{12}^{(0)}$ к моменту времени, когда $\eta^{(1)}$ достигнет на выходе из кристалла величины $\eta^{(1)} = I_{02}/I_{01}$. При этом, как уже отмечалось, слабая волна полностью перекачивается в сильную. Такое значение $\eta^{(1)}$ может достигаться в кристаллах большей, чем x_m , толщины. В начальный момент облучения решетка $k_{12}^{(0)}$ записывается однородно; учитывая это и считая $\eta^{(0)} <<1$, можно записать

$$\eta^{(0)} \approx (A \Delta n h)^2. \tag{21}$$

Здесь $\Delta n \simeq 2\sqrt{I_{01}I_{02}}B't$. В соответствии с (8) интенсивность, определяющая запись решетки $k_{12}^{(1)}$, пропорциональна $I_{01}\sqrt{\eta^{(0)}} \approx I_{01}\sqrt{I_{01}I_{02}}th$. Она, а соответственно и $\Delta n^{(1)}$ линейно растут с глубиной. При такой связи величину $\eta^{(1)}$ можно также приближенно описать выражением типа (21):

$$\eta^{(1)} \approx (I_{01} \sqrt{\eta^{(0)}} th/4)^2.$$
(22)

Приравнивая $\eta^{(0)}$ величине I_{02}/I_{01} , можно из (22) определить *t*. Подставив это значение *t* в (21), найдем искомую к этому времени $\eta^{(0)}$:

$$\eta^{(0)} \approx 8I_{02}/I_{01}.$$
 (23)

Эта оценка по выбранному приближению (22) занижена. При достижении $\eta^{(1)}$ величины I_{02}/I_{01} волна k_2^0 исчезает, но стирания $\Delta n_1^{(0)}$ не происходит до тех пор, пока не возникнет с соответствующей интенсивностью противофазная волна $k_2^{(2)}$. Это приводит к тому, что $\eta^{(0)}$ в переходный период времени достигает больших значений, чем (23). Нестационарное усиление, как видим, возникает из-за большой эффективности решеток. Причины этого лежат в том, что на переходной стадии каждая из решеток, за исключением последней, записывается на большей, чем в равновесном состоянии, толщине кристалла. Кроме того, запись, за исключением первой и последней решеток, осуществляется при большей, чем равновесная, амплитуде интенсивности.

Граница, на которой выполняется условие $\eta^{(1)} = I_{02}/I_{01}$, движется от выходной грани кристалла и в равновесии останавливается на глубине $x = \Lambda_x/2$. На это затрачивается характерное время т. Из (21), (22) можно найти время, необходимое для возникновения $\eta^{(1)} = I_{02}/I_{01}$ на толщине l: $t = \tau \Lambda_x/2l$. С течением времени облучения равенство (23) может выполняться и на меньшей толщине l_1 . При этом полное значение $\eta^{(0)}(l)$ может значительно превысить величину (23) в связи с тем, что записанная на глубине $l - l_1$ решетка $k^{(0)}$ исчезнет за время, не меньшее, чем т. Таким образом, усиление слабого пучка более чем на порядок при достаточно большой толщине кристалла происходит на несдвиговой решетке $k_{12}^{(0)}$.

При выравнивании интенсивностей пучков на выходной грани $(I_1 = I_2)$ зарождения световых решеток $k_{12}^{(i)}$ не происходит. Из этого следует, что слабый

пучок может достичь интенсивности $I_2 \leq I_{01}/2$. Для коэффициента усиления

слабого пучка ($\Gamma = I_2/I_{02}$) должно выполняться условие

$$\Gamma \leq I_{01}/2. \tag{24}$$

Равенство достигается при некоторой толщине l_{Γ} . При толщинах $l > l_{\Gamma}$ зависимость Γ от l может исчезать. В литературе приводятся разные коэффициенты усиления, но они могут отражать не столько свойства среды, сколько соотношения интенсивностей облучающих пучков.

шения интенсивностей облучающих пучков. Амплитуда решеток $k_{12}^{(i)}$, т. е. $\Delta n^{(i)}$, зависит от произведения $\sqrt{I_{01}I_{02}}$ непосредственно (для $k_{12}^{(0)}$) или через $\eta^{(i)}$. В связи с этим малость величины $\sqrt{I_{01}I_{02}}$ (например, из-за малости I_{02} слабого пучка) приведет к малым Δn и соответственно к исчезновению усиления при условии $h \leq \Lambda_x/2$. При таком условии в

образце в соответствии с (19), (20) в стационарном состоянии могут быть записаны только две решстки — $k_{12}^{(0)}$ и $k_{12}^{(1)}$. Они на переходной стадии не могут занимать большего пространства и превышать стационарные значения $\eta^{(0)}$, $\eta^{(1)}$, при $h = \Lambda_x/2$ значение Г равно 1. Это объясняет порог интенсивности в усилении слабого пучка, который наблюдается в опытах.

При выключении исходного слабого пучка на начальной стадии усиления процесс записи решеток $k_{12}^{(i)}$ моментально прекратиться не может. В качестве волн, инициирующих продолжение записи, выступают световые пучки, дифрагированные на записанных к этому моменту решетках. Последние исчезают с характерным временем стирания, которое минимально вблизи входной грани: здесь поле интенсивности однородно. В более глубоких слоях согласно (9) интерференционная картина в момент выключения I_{02} практически не нарушается. Здесь $\Delta n^{(i)}$ еще не достигли насыщения по интенсивности и процесс записи должен продолжаться. При соответствующей длине кристалла интенсивность волны, дифрагированной в направлении 2, может достичь той же предельной величины $I_{01}/2$.

Если слабая исходная волна выключена на стадии, близкой к стационарной, то в кристалле восстанавливается противофазная волна, которая интерференционно гасила исходную. До интенсивности I_{02} она восстанавливается на глубине $\Lambda_x/2$. Начиная с плоскости $x = \Lambda_x/2$, восстанавливается интерференционное поле, равноценное по амплитуде исходному (сдвинутос относительно исходного на π). Это поле исчезает с характерным временем т. За это время снова записываются решетки $k_{12}^{(i)}$. При соответствующей толщине кристалла I_2 также может достичь величины $I_{01}/2$.

Выше рассмотрены механизмы нестационарного усиления для случая пучков с параллельными поляризациями. Сравнение с приведенными экспериментами показывает полное соответствие выведенных функциональных характеристик и для случая e° , e^{ϵ} -пучков. Однако ясно, что для этого случая из-за непрямой связи амплитуды решетки \tilde{k}_{12} с $I_{01}I_{02}$ числовые критерии (например, для Γ , x_m , I_{Γ}) могут быть несколько иными. Мы не будем обсуждать это, а кратко затронем еще один важный вопрос: почему голографические решетки записываются лучше (т. е. с большей эффективностью) в e° -, e^{ϵ} -, чем в e° -, e° - и e^{ϵ} -, e^{ϵ} -пучках.

Ответ на поставленный вопрос видим в следующем. В стационарном состоянии в освещенной области кристалла (в условиях закороченного кристалла) полный ток *j* должен равняться нулю:

$$j = j_{\phi} + \sigma_{\phi} E^* = G \kappa I + \beta \kappa I E^* = 0.$$
⁽²⁵⁾

Этим известным выражением пользуются для определения максимального наведенного ФГ-током поля E^* (*G* и β — коэффициенты Гласса и фотопроводимости):

97

$E^* = G/\beta,$

Предлагаем обратить внимание на то, что в LiNbO3 имеется различие квантовых выходов ФГ-тока и фотопроводимости в зависимости от поляризации: $G^{e} \neq G^{o}, \beta^{e} \neq \beta^{o}$. В таком случае ток (25) представится в виде $G^{o}\kappa^{o}I^{o} +$ + $G^{\epsilon}\kappa^{\epsilon}I^{\epsilon}$ + ($\beta^{\circ}\kappa^{\circ}I^{\circ}$ + $\beta^{\epsilon}\kappa^{\epsilon}I^{\epsilon}$) E^{*} = 0, E^{*} будет однородным только в случае, когда распределения I° и I^{ϵ} пропорциональны: $I^{\circ} = CI^{\epsilon}$, $E^{*} = \frac{C\kappa^{\circ}G^{\circ} + \kappa^{\epsilon}G^{\epsilon}}{G^{\circ} + \kappa^{\epsilon}G^{\epsilon}} =$ $C\kappa^{o}\beta^{o} + \kappa^{e}\beta^{e}$ = const. В остальных случаях E^* зависит от интенсивности. Пусть, например, $I^{e} > I^{o}$ и в распределении интенсивности есть интерференционный член, пропорциональный I°sink₁₂z, при этом I^e — однородная или слабоменяющаяся (относительно Λ_2) функция координат; тогда $E^* = \frac{\kappa^o G^o I^o \sin k_{12} z}{\kappa^e G^e I^e} + \text{const. Видно,}$

что при облучении e²-, e^c-пучками запись синусоидальной, стационарной, несдвиговой решетки в объеме толстого кристалла оказывается возможной.

В заключение кратко перечислим новые результаты, содержащиеся в предлагаемой работе: выяснены и классифицированы реальные характеристики записи голограмм в LiNbO3 : Си при параллельных и перпендикулярных поляризациях записывающих пучков; показано, что экспериментальные характеристики объясняются в рамках моделей несдвиговой записи голограмм; представлена новая схема анализа нестационарного усиления, с помощью которой найден ряд невыясненных ранее функциональных характеристик (явный вид стационарной решетки; ее разложение на две брэгговские решетки, интерференционное гашение и голографическое усиление слабого пучка, количественные критерии усиления, пороговый характер усиления и др.); показана возможность записи стационарных, несдвиговых голографических решеток в условиях незакороченного кристалла.

СПИСОК ЛИТЕРАТУРЫ

- 1. Giass A. M., von der Linde D., Negran T. J. High-voltage bulk photovoltaic effect and photorefractive process in LiNbO3 // Appl. Phys. Lett.-1974.-25.-P. 233.
- 2. Белиничер В. И., Стурман Б. И. Фотогальванический эффект в средах без центра инверсии // УФН.—1980.—130, № 3.
- 3. Стурман Б. И. Фотогальванический эффект новый механизм нелинейного взаимодействия волн в электрооптических кристаллах // Квантовая электрон.—1980.—7, № 3.
- 4. Kanaev I. F., Malinovsky V. K. Violation of rules of restriction of gologram recording and reading in LiNbO3 // Ferroelectrics -1992. -126. -P. 67.
- 5. Канаев И. Ф., Малиновский В. К. Механизм записи поляризационных голограмм в LiNbO₃ // ΦTT.−1992.−№ 3.
- 6. Канаев И. Ф., Малиновский В. К. Сдвиговые голограммы в LiNbO3 // Автометрия.---1983.—№ 5.
- 7. Канаев И. Ф., Малиновский В. К., Пугачев А. М. Исследование вклада горячих электронов в процессы переноса в кристаллах LiNbO₃ // ФТТ.-1987.-29, вып. 3.
- 8. Канаев И. Ф., Малиновский В. К. Механизм рассеяния света в фоторефрактивных средах // Автометрия.-1991.-Nº 4.
- 9. Винецкий В. Л., Кухтарев Н. В., Одулов С. Г., Соскин М. С. Динамика самодифракции когерентных световых пучков // УФН.—1979.—129, № 1.

Поступила в редакцию 20 мая 1992 г.

(26)