РОССИЙСКАЯ АКАДЕМИЯ НАУК Сибирское отделение

АВТОМЕТРИЯ

<u>№</u> 5

1993

УДК 517.518.85

В. М. Ефимов, А. Н. Колесников

(Новосибирск)

АСИМПТОТИЧЕСКИ ОПТИМАЛЬНАЯ ИНТЕРПОЛЯЦИЯ МАРКОВСКОГО СИГНАЛА И ЕЕ ПРИМЕНЕНИЕ ПРИ ДИСКРЕТНОМ СИНУСНОМ ПРЕОБРАЗОВАНИИ

Получены асимптотически оптимальные формулы для интерполяции марковского сигнала. Соотношения апробированы на нетривиальной предварительной интерполяции двумерного сигнала при его дискретном синусном преобразовании.

Введение. В [1] изложен метод получения асимптотически оптимальных интерполяционных формул, суть которого сводится к следующему: в предположении, что интерполируемый сигнал является случайным и его математическое ожидание неизвестно, ищутся оптимальные статистические интерполяционные формулы. Затем в полученных соотношениях делается предельный переход и находятся асимптотически оптимальные интерполяционные соотношения, зависящие только от степени гладкости сигнала.

Предлагаемая методика конкретизируется для случая марковского сигнала и используется при создании алгоритма предварительной интерполяции изображений, применяемой в алгоритме сжатия изображения с дискретным синусным преобразованием (ДСП).

Интерполяционные соотношения. В [1] приведены результаты для случая, когда отсчеты, по которым производится интерполяция, расположены равномерно на линии, окружности и сфере. Рассмотрим случай произвольного расположения на плоскости *n* отсчетов, по которым производится интерполяция^{*}:

$$\widehat{f}(x_0, y_0) = \sum_{i=1}^n w_i(x_0 - x_i, y_0 - y_i) f(x_i, y_i)$$
(1a)

или для простоты:

$$\widehat{f}_0 = \sum_{i=1}^n w_i f_i, \tag{16}$$

где {w_i} — набор весовых функций, доставляющий минимум среднему квадрату ошибки

$$\varepsilon^{2} = \langle (f_{0} - \hat{f}_{0})^{2} \rangle = \left\langle \left(f_{0} - \sum_{i=1}^{n} w_{i} f_{i} \right)^{2} \right\rangle$$
(2)

при условии нормировки

72

Нолученные соотношения справедливы для пространства любой размерности.

$$\sum_{i=1}^{n} w_i = 1.$$
 (3)

Учитывая (3), выразим одну из искомых весовых функций, например w_n, через остальные:

$$w_n = 1 - \sum_{i=1}^{n-1} w_i$$
 (4)

и соответственно

$$\varepsilon^{2} = \left\langle \left(f_{0} - f_{n} - \sum_{i=1}^{n-1} w_{i} (f_{i} - f_{n}) \right)^{2} \right\rangle.$$
(5)

Дифференцируя функционал (5) по весовым функциям w_j, получим систему уравнений:

$$\left\{\sum_{i=1}^{n-1} w_i R_{ij} = R_{0j}\right\}, \quad j = \overline{1, n-1},$$
 (6a)

где

$$R_{ij} = 1 + \rho(r_{ij}) - \rho(r_{in}) - \rho(r_{jn}), \qquad (66)$$

 $\rho(r_{ij}) = \langle f \hat{f}_j \rangle / \sigma^2$ — нормированная корреляционная функция; r_{ij} — эвклидово расстояние между отсчетами с номерами *i* и *j*.

Решение системы (ба) дает искомый набор весовых коэффициентов:

$$w_j = \Delta_j / \Delta_{00}. \tag{7}$$

Здесь Δ_{00} — главный минор определителя Δ , элементы которого R_{ij} $(i, j = \frac{1}{0, n-1}); \Delta_j$ — главный минор Δ_{00} , в котором элементы *j*-го столбца R_{ij} $(i, j = \overline{1, n-1})$ заменены на элементы столбца свободных членов R_{0j} . Дисперсия интерполяционного остатка имеет вид:

$$\varepsilon^2 = \sigma^2 \Delta / \Delta_{00}. \tag{8}$$

Для марковского изотропного сигнала с корреляционной функцией

$$\rho(r) \cong 1 + \alpha r \quad (\alpha < 0) \tag{9}$$

в асимптотике ($\rho(r) \rightarrow 1$) соотношение (бб) можно представить очевидным образом в виде

$$R_{ii} = 1\alpha I (-r_{ii} + r_{in} + r_{jn}).$$
(10)

Использование соотношения (10) позволяет вычислять на ЭВМ значения весовых функций для конкретных расстояний непосредственно по формуле (7) (эта замена эквивалентна предельному переходу), не прибегая к аналитическому раскрытию определителей. Последняя процедура уже при n = 4 дает довольно громоздкие соотношения.

Легко получить аналитическое решение для трех произвольно расположенных точек*:

$$w_j = \Delta_j / \Delta_{00}$$
 $(j = 1, 2, 3),$

·····

^{*} В выражениях для миноров опущен коэффициент 1α1.

где

$$\Delta_{00} = (r_{12} + r_{13} + r_{23})^2 - 2r_{12}^2 - 2r_{23}^2 - 2r_{13}^2,$$

$$\Delta_1 = r_{23}(r_{12} + r_{13} - r_{23}) - 2r_{01}r_{23} + r_{02}(-r_{12} + r_{13} + r_{23}) + r_{03}(r_{12} - r_{13} + r_{23}),$$

$$\Delta_2 = r_{13}(r_{12} + r_{23} - r_{13}) - 2r_{02}r_{13} + r_{01}(-r_{12} + r_{23} + r_{13}) + r_{03}(r_{12} - r_{23} + r_{13}),$$

$$\Delta_3 = r_{12}(r_{23} + r_{13} - r_{12}) - 2r_{03}r_{12} + r_{02}(-r_{23} + r_{13} + r_{12}) + r_{01}(r_{23} - r_{13} + r_{12}).$$

Стоит отметить, что по предложенной методике для интерполяции значений интенсивности внутри фрагмента по четырем отсчетам на его границе можно получить несколько более эффективные интерполяционные соотношения, нежели приведенные в [2].

Дискретное синусное преобразование с предварительной интерполялией В.Д.А. транюдси, то ЗИЗ чниям функции интенсивности на границах фрагментов строится интерполирующая функция, к разностной функции применяется дискретное синусное преобразование, полученные трансформанты квантуются и кодируются; значения функции интенсивности на границе кодируются подобным образом: по значениям функции на углах фрагмента строится интерполирующая функция, к разностной функции также применяется синусное преобразование. Таким образом, предварительная интерполяция позволяет представить изображение в виде двух частей: интерполяционной части и постинтерполяционного остатка — разницы между изображением и интерполяционным представлением. Первая часть изображения несет о нем основную информацию, вторая уточняет сигнал. Это разделение созвучно с идеями, изложенными в [3-5].

Эффективность рассматриваемого алгоритма сжатия в значительной степени определяется эффективностью предварительной интерполяции. В работе [2] были приведены интерполяционные соотношения для изотропных и анизотропных изображений при интерполяции по четырем точкам, расположенным на границе фрагмента.

Ниже исследуются характеристики интерполяции при наличии внутри фрагмента реперного отсчета, наряду с отсчетами, расположенными на периметре и участвующими в интерполяции сигнала.

Реперные отсчеты. В [2] отмечено, что при перекрытии границ смежных фрагментов затраты на кодирование отсчетов, расположенных на углах фрагментов, распределяются между четырьмя фрагментами, а на границе — между двумя фрагментами. Затраты на кодирование реперных точек, расположенных внутри фрагмента, относятся только к нему. Поэтому естественным является такое расположение реперных точек, при кото-

Рис. 1. Схема интерполяции по четырем отсчетам на периметре фрагмента и одной точке в центре

Рис. 2. Схема интерноляции по четырем отсчетам на периметре фрагмента Рис. 3. Схема интерполяции по двум отсчетам на периметре фрагмента и одной точке в центре

ром упомянутые затраты наиболее полно компенсируются уменьшением энтропии постинтерполяционного остатка. Представляется естественным (это, возможно, верно для сигнала с гауссовским распределением) располагать реперные точки таким образом, чтобы минимизировать максимальную дисперсию постинтерполяционного остатка внутри фрагмента. Если реперная точка одна, ее естественно располагать в центре фрагмента (рис. 1). При этом в асимптотике для изотропного марковского поля максимальная дисперсия интерполяционного остатка уменьшается примерно вдвос. Следующее минимальнос число реперных точек, которые можно симметрично расположить внутри фрагмента, равно четырем. По-видимому, симметрия сохраняется в том случае, если число реперных точек равно k = 4m или k = 4m + 1. Если k = 1, то, как отмечалось выше, реперную точку целесообразно поместить в центр фрагмента. Это справедливо при любом разумном виде интерполяции. Если m > 0, то рациональное расположение точек зависит от вида интерполяции.

Результаты. На основе разработанного алгоритма была составлена программа для вычисления интерполяционных коэффициентов для любого расположения опорных отсчетов, а также программа для проверки предложенного метода интерполяции на тестовых изображениях.

Таблица і

Коэффициенты интерполяции по пяти отсчетам (n = 5)

	w 1							ws						
0,442	0,213	0,115	0,059	0,025	0,009	0,006	0,104	0,159	0,201	0,218	0,201	0,159	0,104	
0,615	0,351	0,190	0,086	0,027	0,005	0,003	0,159	0,288	0,394	0,441	0,394	0,288	0,159	
0,667	0,404	0,207	0,064	-0,002	-0,014	-0,008	0,201	0,394	0,588	0,699	0,588	0,394	0,201	
0,678	0,414	0,200	0	-0,028	-0,027	-0,014	0,218	0,441	0,699	1,0	0,699	0,441	0,218	
0,667	0,404	0,207	0,064	-0,002	-0,014	-0,008	0,201	0,394	0,588	0,699	0, <i>5</i> 88	0,394	0,201	
0,615	0,351	0,190	0,086	0,027	0,005	0,003	0,159	0,288	0,394	0,441	0,394	0,288	0,159	
0,442	0,213	0,115	0,059	0,025	0,009	0,006	0,104	0,159	0,201	0,218	0,201	0,159	0,104	
	۱ <u>,</u>	I	I	ł	1	1						•	•	

.

	Коэф	хфицие четыре	Таблица Отношение дисперси					
0,456	0,229	0,139	0.096	0.072	0.057	0.044	n	$\epsilon_n^2/\epsilon_\infty^2$
0,649	0,399	0,259	0,180	0,133	0.101	0.065	1	2,75
0,715	0,484	0,329	0,233	0,171	0,124	0.074	2	1 ,37
0,732	0,508	0,352	0,25	0,183	0,132	0,076	3	1,16
0,715	0,484	0,329	0,180	0,171	0,124	0.074	4	1,09
0,649	0,399	0,259	0,180	0,133	0,101	0,065	5	1,05
0,456	0,229	0,139	0,096	0,072	0,057	0,044	6	1,04

Коэффициенты интерполяции по трем отсчетам (n = 3)

Таблица З

*)								w3						
0,443	0,212	0,109	0,024	0	0	0	0 ,115	0,168	0,208	0,231	0,208	0,168	0,113	
0,620	0,352	0,181	0,034	0	0	0	0,168	0,296	0,400	0,466	0,400	0,296	0,168	
0,684	0,419	0,207	0,024	0	0	0	0,208	0,400	0,586	0,720	0,586	0,400	0,208	
0,360	0,233	0, 11 5	0	0	0	0	0,231	0,466	0,720	1	0,720	0,466	0,231	
0	0	0	0	0	0	0	0,208	0,400	0,586	0,720	0,586	0,400	0,208	
0	0	0	0	0	0	0	0,168	0,296	0,400	0,466	0,400	0,296	0,168	
0	0	0	0	0	0	0	0,115	0,168	0,208	0,231	0,208	0,168	0,113	

На рис. 1—3 приведены схемы интерполяции для случаев пяти, четырсх и трех точек. Соответствующие коэффициенты интерполяции представлены в табл. 1-3. На рис. 4 представлено исходное тестовое изображение, а на рис. 5-7 — интерполированное изображение и постинтерполяционный остаток для рассматриваемых схем при размере фрагмента 9 × 9.

Рассмотрим схему интерполирования изотропного сигнала при наличии одного реперного отсчета в центре фрагмента и четырех — на границе. Особенность интерполяции, как и в [2], заключается в том, что положение отсчетов f_1, f_2, f_3 и f_4 зависит от положения интерполируемого значения f_0 .

В силу симметрии схемы интерполяции достаточно рассчитать две весовые функции w1 и w5, так как функции w2, w3, w4 получаются из w1 соответствующей заменой переменных и их знаков. В табл. 1 представлены функции w1 и w5.

Модификация метода интерполяции по пяти отсчетам заключается в том, что из интерполяции исключаются две самые удаленные точки и число опорных отсчетов сокращается до трех (см. рис. 3). Свойства марковского сигнала таковы, что отсчет, расположенный между интерполируемым значением и другим отсчетом, полностью или частично исключает его из интерполяции

Рис. 4. Исходное изображение

76

Рис. 5. Изображение, интерполированное по двум отсчетам на периметре фрагмента и по одному отсчету в центре (С/Ш – 27,12 дБ) (а); постинтерполяционный остаток при интерполяции по двум отсчетам на периметре фрагмента и по одному отсчету в центре (увеличен в 2 раза) (b)

Рис. 6. Изображение, интерполированное по четырем отсчетам на периметре фрагмента (С/Ш – - 25,57 дБ) (а); постинтерполяционный остаток при интерполяции по четырем отсчетам на периметре фрагмента (увеличен в 2 раза) (b)

Рас. 7. Изображение, интерполированное по четырем отсчетам на периметре фрагмента и по одному отсчету в центре (С/Ш – 27,25 дБ) (а); постинтерполяционный остаток при интерполяции по четырем отсчетам на периметре фрагмента и по одному отсчету в центре (увеличен в 2 раза) (b)

. 77

последней. Кроме того, если отсчеты расположены примерно на одинаковом расстоянии друг от друга и от интерполируемого значения, то дисперсия постинтерполяционного осгатка уже при не очень большом числе отсчетов, выходит на установившееся значение. Если, например, отсчеты равномерно расположены на окружности, то отношение дисперсии ошибки интерполяции значения в центре круга по *n* отсчетам к дисперсии при $n \to \infty$ равно:

$$\varepsilon_n^2 / \varepsilon_\infty^2 = \frac{\pi}{\pi - 2} \left[1 - \frac{1}{n} \left(2\sin\frac{m\pi}{2n} \sin\frac{(m+1)\pi}{2n} / \sin\frac{\pi}{2n} + (n-1-2m) \right) \right], \quad (12)$$

где n = 2m + 2 (*n* четно) и n = 2m + 1 (*n* нечетно).

Табл. 4 содержит расчеты по формуле (12), из которых следует, что уже при n ≥ 3-4 эффективность наращивания n резко падает. В связи с этим

интерполяция по трем отсчетам, ближайшим к интерполируемому значению по схеме, практически эквивалентна схеме интерполирования по пяти отсчетам на рис. 1. Табл. 3 содержит интерполяционные коэффициенты по этой схеме. Как следует из сравнения табл. 1 и 3, в квадранте х, у ≥ 0 коэффициенты интерполяции по трем и пяти отсчетам мало отличаются друг от друга. Недостаток интерполяции по трем отсчетам заключается в том, что при переходе из квадранта в квадрант один из отсчетов, по которому производится интерполяция, заменяется на другой, что приводит к появлению интерполяционного шума. Для рассмотренного случая этот шум достигает максимального значения в точках $(0; \pm 0,5)$ и $(\pm 0,5; 0)$ и равен примерно

$$\Delta \varepsilon^2 = 0.02\sigma^2 |\alpha|l$$

(21 — физическая ширина фрагмента).

Заключение. Предложенная в [1] процедура построения асимптотически оптимальных интерполяционных формул конкретизирована для марковского сигнала и применена для рассмотренного ранее авторами [2] способа сжатия изображений методом дискретного синусного преобразования с предварительной интерполяцией.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефимов В. М. Асимптотически оптимальные интерполяционные соотношения // Автометрия.—1992.—№ 4.
- 2. Ефимов В. М., Колесников А. Н. Синусное преобразование сигнала с предварительной интерполяцией // Автометрия.—1992.—№ 5.
- 3. Meiri A. Z., Yudelevich E. A pinned sine transform image coder // IEEE Trans. Commun.-1981.-COM-29.-P. 1728.
- 4. Farrelle P. M., Jain A. K. Recursive block coding a new approach to transform coding // IEEE Trans. Commun.-1986.-COM-34, N 2.
- 5. Farrelle P. M. Recursive block coding for image data compression. -- Berlin: Springer-Verlag, 1990.

Поступила в редакцию 10 апреля 1993 г.

78 . .