РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

№ 5

1994

УДК 621.373.826.038.825.4

В. Г. Волков, А. Д. Дуб, А. М. Жмудь, В. В. Фромичев

(Новосибирск)

ПОЛУПРОВОДНИКОВЫЙ ИНЖЕКЦИОННЫЙ ЛАЗЕРНЫЙ ИЗЛУЧАТЕЛЬ ДЛЯ МАГНИТООПТИЧЕСКИХ НАКОПИТЕЛЕЙ

Описана конструкция полупроводникового лазерного излучателя на основе мезазарощенной гетероструктуры в системе соединений AlGaAs/GaAs. Показано, что этот лазер обеспечивает выходную мощность 40 мВт в одномодовом режиме при эллиптичности диаграммы излучения не более 1 : 2.

Введение. Появление в конце 70-х годов инжекционных полупроводниковых лазеров на тройных соединениях арсенида галлия — арсенида алюминия, работающих в режиме непрерывной генерации с высокой эффективностью и обладающих микронными размерами излучающей области, совершило настоящую революцию в области информационных технологий. Уже к началу 90-х годов ежегодный мировой объем выпуска полупроводниковых лазеров только для считывающих головок аудио- и видеопроигрывателей составил более 20 млн. штук [1].

Существенное расширение области применения полупроводниковых лазеров произошло при создании оптических дисковых ЗУ и, в частности, ЗУ на реверсивных магнитооптических дисках. Для записи и стирания информации в последних из них потребовались мощности, на порядок большие, чем для считывания при сохранении минимальных размеров тела свечения.

Основные электрооптические параметры полупроводникового лазера определяются исходя из требований к световому пятну на диске — носителе информации. Эти требования оговорены Международным стандартом [2].

При использовании для записи оптического импульса длительностью 70 нс мощность излучения на диске должна быть порядка 10 мВт. С учетом коэффициента пропускания света оптической головки около 0,25 необходимая мощность излучения лазера должна составлять 40 мВт.

Длина волны излучения ограничена максимально допустимым размером пятна на диске и в соответствии с упомянутым стандартом должна быть не более 840 нм. Закономерным является требование повышения плотности записи и, следовательно, перехода в более коротковолновую область. На практике уменьшению длины волны ниже 770 нм в лазерах, выполненных на соединениях арсенида галлия — алюминия, препятствует резкий рост рабочих токов и снижение ресурса. Дальнейшее уменьшение длины волны требует перехода к соединениям InGaAIP, однако до сих пор не появилось сообщений о применении таких лазеров в оптических дисковых ЗУ, хотя публикации об их разработке имеются [3].

Требования стандарта по размеру и эллиптичности пятна на диске определяют также желаемое минимальное соотношение размеров излучающей области лазера и соответствующие им отношения углов расходимости в плоскости, параллельной (Θ_{\parallel}) и перпендикулярной (Θ_{\perp}) *р*—*n*-переходу. Эллиптичность менее 1 : 2 позволяет упростить оптическую схему, не применяя корректирующих клиньев. Обеспечение этого требования реализуется при

70

формировании оптического резонатора со скачком показателя преломления в плоскости, перпендикулярной *p*—*n*-переходу и параллельной ему [4].

Статья посвящена особенностям конструкции и исследованию характеристик лазерного излучателя, отвечающего вышеперечисленным требованиям по мощности излучения, длине волны и качеству волнового фронта.

Конструкция излучателя. Общий вид корпуса, размеры, расположение области излучения и электрическая схема приведены на рис. 1. Конструкция прибора герметична, обеспечивает эффективный отвод тепла от лазерного кристалла, удобное крепление в аппаратуре и позволяет с высокой точностью размещать тело свечения относительно крепежных отверстий. Лазерный кристалл прибора ИЛПН-210 имеет гетероструктуру на основе тройных соединений AlGaAs/GaAs со ступенчатым профилем коэффициента преломления (зарощенная мезаструктура) вдоль р-п-перехода и несимметричный волновод поперек р-п-перехода, обеспечивает размеры тела свечения 1,5 × 2,0 мкм, соотношение углов расходимости менее 1 : 1,5 и практически нулевой астигматизм. Однако малая рабочая мощность излучения (до 3 мВт) ограничивает применение этого прибора в основном для считывания информации. Задача увеличения выходной мощности до 40 мВт при сохранении малых эллиптичности и астигматизма является сложной проблемой вследствие функционирования прибора вблизи предельного уровня оптического разрушения материала. Она решена нами путем увеличения размеров излучающей области, снижения удельных тепловых и токовых нагрузок, введения защитных просветляющих и отражающих покрытий зеркал и совершенствования технологии выращивания кристаллов.

Ширина активной области была увеличена на 30—40 %. На заднюю грань для увеличения коэффициента отражения до 90 % наносилось многослойное (15 пар слоев) диэлектрическое покрытие из чередующихся четвертьволновых пленок ZrO₂ и SiO₂. На переднюю грань наносилось защитно-просветляющее

Puc. 2

покрытие четвертьволновой пленки SiO2, уменьшившее коэффициент отражения до 15 %. Длина оптического резонатора была увеличена с 220 до 500 мкм.

Основные электрооптические характеристики. На рис. 2 приведены типичные ватт-амперная и вольт-амперная характеристики лазерных излучателей, полученные при комнатной температуре, в режиме непрерывной генерации. Как видно из ватт-амперной характеристики, во всем диапазоне мощностей сохраняется высокая линейность при крутизне около 0,55 мВт/мА, что свидетельствует об отсутствии перегрева активной области и низком тепловом сопротивлении.

Дифференциальное омическое сопротивление составляет 7 + 10 Ом, что

несколько выше, чем у планарных полосковых лазеров.

На рис. З приведена гистограмма распределения приборов из одной гетероструктуры по значениям рабочих токов при выходной мощности 40 мВт. Разброс рабочих токов незначителен, что свидетельствует о высокой однородности структур и воспроизводимости процессов монтажа и пайки кристаллов на теплоотвод.

Угловая расходимость измерялась на поворотном столике через шелевую диафрагму с угловыми размерами $4 \times 0,1^{\circ}$ с погрешностью ±0,3°. Распределение интенсивности излучения в дальнем поле у большинства излучателей носит одномодовый характер. Значение $\Theta_{\parallel} 14$ —20°, а $\Theta_{\downarrow} 30$ —36°. Среднее отношение $\Theta_{\downarrow} / \Theta_{\parallel} 1,9 \div 1$. Θ_{\downarrow} практически не зависит от уровня излучасмой мощности. При увеличении уровня выходной мощности увеличение расходимости (Θ_{\parallel}) может наблюдаться у некоторых лазеров за счет появления моды

72

Puc. 4

первого порядка, что обусловлено большей шириной мезы за счет технологического разброса при формировании лазерного канала. Типичные характеристики угловой расходимости при разных уровнях мощности в плоскости, параллельной *p*—*n*-переходу, и на уровне 40 мВт в перпендикулярной плоскости приведены на рис. 4. На рис. 5 даны распределения интенсивности в параллельной плоскости у прибора, не сохраняющего одномодовый характер генерации. Поведение соответствует модели широкой мезы с неровными стенками, селектирующими высшие моды [5].

73

6 Автометрия № 5, 1994 г.

Puc. 6

Типичная спектральная характеристика при разных уровнях мощности приведена на рис. 6. Во всем диапазоне мощностей сохраняется одночастотный режим излучения со сдвигом длины волны в длинноволновую сторону на 0,8 + 4,2 нм при изменении мощности от 5 до 40 мВт.

Для оценки степени поляризованности излучения использовался пленочный ИК-поляризатор микроскопа МИК-4. Луч лазера коллимировался микрообъективом с числовой апертурой 0,4. Степень поляризованности излучения (*TE/TM*) при уровне излучаемой мощности 6 мВт (необходимая для считывания информации) составила 32 + 37.

Заключение. Созданные экспериментальные образцы лазеров были встроены в оптическую головку магнитооптического накопителя ИАиЭ СО РАН. Почти симметричное тело свечения и отсутствие астигматизма позволили исключить из оптической схемы формирующие пучок клинья и соответственно уменьшить потери света без ухудшения качества получаемых сигналов.

В заключение авторы выражают свою признательность П. Е. Твердохлебу и В. С. Соболеву за постоянный интерес к работе и совместное обсуждение результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cunningham K. Forecast 1993. The laser marketplase // Lasers and Optronics.-1993.-12, N 1.-P. 15.
- 2. ISO/IEC I/SC 23N283, 1989.
- 3. Okajima M., Watanabe Y., Nishikawa Y. et al. A real-index guided inGaAlP visible laser diode with a small beam astigmatism // IEEE J. Quant. Electron. -- 1991. -- 27, N 6. -- P. 1491.
- Kumagai O., Ohata T. et al. A high-power tapered SAN laser for an optical pick-up // Jap. J. Appl. Phys. Pt. 2.—1987.—26, N 4.—P. 107.

- 5. Henry C. Y., Merritt F. Ralph. Single mode operation of buried heterostructure lasers by loss stabilization // IEEE J. Quant. Electron.-1981.-17, N 11.-P. 2196.
- Garbyzov D. Z., Kochergin A. V. et al. High-power (1 W, cw) single-lobe operation of LPE-grown InGaAsP/GalnP (Λ = 800 nm) SC SQW broad-area lasers // Electron. Lett.-1989.-25, N 18.-P. 1239.
- 7. Yoo Jac. S. et al. Investigation of low temperature variation on a mirrow of power InGaAsP/InGaP lasers // Jap. J. Appl. Phys. Pt. 2.—1992.—31, N 12A.—P. L1686.

Поступила в редакцию 15 марта 1994 г.

•

