РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

Nº 6

1997

АВТОМАТИЗИРОВАННЫЕ ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ

УДК 621.382: 621.317.3

П. А. Бородовский, А. Ф. Булдыгин

(Новосибирск)

СВЧ-МЕТОДЫ ИЗМЕРЕНИЯ РЕЛАКСАЦИИ НЕРАВНОВЕСНЫХ НОСИТЕЛЕЙ ЗАРЯДА И ИХ ПРИМЕНЕНИЕ ДЛЯ ИССЛЕДОВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК КРТ

Представлены результаты измерения времени релаксации неравновесных посителей заряда (ПНЗ) при ударной иопизации в пленках $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$, полученых методом молекулярно-лучевой эпитаксии. При размещении образца с контактами в волноводе ударная ионизация производится импульсами постоянного и СВЧ электрических полей. Предложен также бесконтактный метод измерений для образцов произвольной формы, которые размещаются в резонаторе, возбуждаемом импульсами сильного СВЧ-поля, а индикация релаксации ПНЗ производится с помощью малого непрерывного сигнала. В исследованных пленках кадмий—ртуть—теллур (КРТ) n-типа с повышенным составом x в приповерхнограции, а не уменьшается, как в образцах из кристаллов КРТ с одпородным составом.

В работе [1] для исследования времени жизни неравновесных носителей заряда (ННЗ) в кристаллах кадмий—ртуть—теллур (КРТ) использовались ударная ионизация в сильном электрическом поле и прохождение СВЧ-сигнала в волноводе с образцом для регистрации релаксации неравновесной проводимости $\Delta\sigma(t)$. По сравнению с фотоионизацией ударная ионизация в сильном электрическом поле позволяет легко получить большие концентрации ННЗ при их однородной генерации по толщине образца. Для образца КРТ из кристалла n-типа с составом x=0,205 были проведены измерения времени жизни ННЗ в диапазоне до $\Delta n/n_0 \approx 5$ и показано, что уже при $\Delta n/n_0 > 0,1$ время жизни быстро уменьшается с ростом Δn . Измеренные зависимости $\Delta n(t)$ хорошо согласуются с расчетом.

В настоящей работе рассмотрены другие варианты СВЧ-методов измерения времени жизни ННЗ, в том числе и метод, который не требует приготовления образцов с омическими контактами, а ударная ионизация производится сильным импульсным СВЧ-полем. Эксперименты были проведены на образцах из эпитаксиальных структур с пленкой КРТ *п*-типа, полученной методом молекулярно-лучевой эпитаксии на подложках высокоомного арсенида галлия [2, 3].

На рис. 1, a, b приведены схемы для измерения релаксации проводимости $\Delta\sigma(t)$ при размещении образца I в центре поперечного сечения волновода 2. Волновод имеет уменьшенную высоту до 2 мм от стандартного сечения 10×23 мм. При измерениях по методике, аналогичной описанной в [1], к образцу с омическими контактами прикладывались импульсы напряжения длительностью 15 нс и импульс тока образца наблюдался на осциллографе. При возникновении лавинной ударной ионизации ток в течение импульса

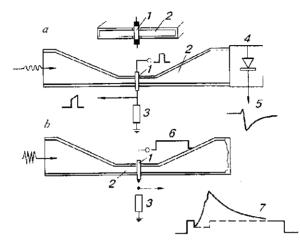


Рис. 1. Размещение образца в волноводе для измерения релаксации проводимости при ударной иопизации:

a — постоянным электрическим полем; b — электрическим полем CBЧ: I — образец с контактами; 2 — волновод; 3 — токовое сопротивление; 4 — CBЧ-детектор; 5 — сигнал релаксации проводимости на выходе CBЧ-детектора; 6 — зондирующий импулье для регистрации изменения тока в образце при воздействии CBЧ-импульса; 7 — импульс тока в образце до ударной ионизации (штриховая кривая) и после пробоя ($\Delta I/I_0 = \Delta n/n_0 = 2$)

возрастает и отношение приращения тока в конце импульса к току в начале импульса пропорционально $\Delta n/n_0$. Одновременно, наблюдая сигнал с выхода СВЧ-детектора 4, можно регистрировать изменения проводимости образца. До лавинной ударной ионизации в образце с увеличением напряжения импульса на выходе детектора наблюдается сигнал длительностью ~ 15 нс положительной полярности, затем после ударной ионизации — сигнал отрицательной полярности 5, соответствующий релаксации неравновесной проводимости $\Delta \sigma(t)$ или концентрации ННЗ $\Delta n(t)$.

Генерация ННЗ в образце может быть получена и при ударной ионизации в сильном электрическом СВЧ-поле при питании волновода от импульсного СВЧ-источника большой мощности (см. рис. 1, b). В этом случае в цепь образца подается достаточно длинный импульс небольшого напряжения для наблюдения изменения тока в образце при приложении СВЧ-импульса. Источником большой СВЧ-мощности длительностью импульса 400 нс и частотой повторения 400 Гц является магнетрон, генерирующий на частоте 9,37 ГГц. Выход волновода закорочен, и поглощенная в образце мощность определяется по разности падающей и отраженной мошностей, измеряемых с помощью направленных ответвителей. Форма сигнала с сопротивления 3, наблюдаемая на экране осциллографа, показана на вставке к рис. 1, b. До ударной ионизации наблюдается уменьшение тока через образец в течение СВЧ-импульса (штриховая кривая). Это уменьшение вызвано уменьшением подвижности электронов в сильном электрическом СВЧ-поле. При возникновении ударной ионизации ток в течение импульса возрастает вследствие увеличения концентрации носителей. После окончания СВЧ-импульса дальнейшее изменение сигнала соответствует релаксации неравновесных носителей $\Delta n(t)$ вследствие рекомбинации. Уровень генерации ННЗ можно оценить по отношению приращения сигнала после окончания СВЧ-импульса Δu к напряжению u_0 до приложения СВЧ-импульса.

Участок волновода с образцом при измерениях по схемам рис. 1, *a*, *b* полностью погружен в жидкий азот, и температуру образца можно считать равной 77 K, если не учитывать небольшос повышение температуры при нагреве электрическим током. Максимальная средняя мощность, поглощаемая в образце, в наших экспериментах не превышала 50 мВт.

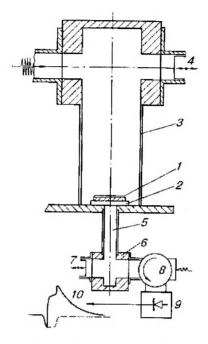


Рис. 2. Расположение образца в цилиндрическом резонаторе для ударной ионизации сильным СВЧ-полем и измерения релаксации проводимости по изменению коэффициента отражения зондирующего сигнала в 8-миллиметровом диапазоне волн:

1 — образец; 2 — диэлектрическая пластина (сапфир); 3 — резонатор TE_{113} с $f_0=9,37$ ГГц; 4 — подвижный короткозамыкатель для настройки; 5 — круглый волновод диаметром 5 мм; 6 — сочленение круглого волновода с прямоугольным волноводом (сечением $7,2\times3,4$ мм); 7 — подвижный короткозамыкатель для настройки; 8 — ферритовый циркулятор; 9 — CBY -детектор; 10 — сигнал на выходе CBY -детектора до ударной ионизации (штриховая кривая) и после пробоя

Изменение проводимости образца при приложении сильного импульсного СВЧ-поля можно наблюдать и с помощью зондирования малым непрерывным СВЧ-сигналом. Один из вариантов этого метода СВЧ-измерения релаксации проводимости при импульсной генерации ННЗ сильным СВЧ-полем представлен на рис. 2. Образец / произвольной формы (без омических контактов) помещен в резонатор 3, который возбуждается мощным СВЧ-импульсом от магнетрона (как и на рис. 1, b). Образец расположен подложкой вниз на тонкой диэлектрической пластинке 2 (сапфир), закрывающей отверстие диаметром 5 мм. Внутренний диаметр резонатора 24 мм, и его длина выбрана из условия резонанса на типе колебаний TE_{113} для частоты 9,37 ГГц. Отрезок волновода с короткозамыкателем 4 служит для подстройки и согласования. Нижняя часть резонатора изготовлена из тонкостенной трубы (нержавеющая сталь), и ее стенки охлаждаются жидким азотом. Отрезок тонкостенной трубки также из нержавеющей стали диаметром 5 мм соединен с волноводным устройством 6, которое более подробно описано в [4]. Настройка на максимальную чувствительность осуществляется подвижным короткозамыкателем 7 в прямоугольом волноводе сечением 3,4 × 7,2 мм. Источником зондирующего СВЧ-сигнаа служит генератор на диоде Ганна, работающий на частоте 38,6 ГГц. Через ерритовый циркулятор 8 отраженный СВЧ-сигнал регистрируется детектором 9 и наблюдается на экране осциллографа. Форма наблюдаемых сигналов о и после ударной ионизации показана на вставке 10. Частота зондирующего сигнала выбрана из условия, чтобы при настройке волноводного устройства 6 игнал третьей гармоники (3f = 31,233 ГГц) СВЧ-импульса, возбуждающего езонатор, не наблюдался.

Таблица 1

Номер образца	Голщина пленки, мкм	х	ж ₀ (на поверхности)	Холловские параметры (77 К)		
				n ₀ , см ⁻³	µ ₀ , см ² /В · с	
1	7,5	0,22	0,3	$7.5 \cdot 10^{14}$	4 · 10 ⁴	
2	7,6	0,21	0,3	4,3 · 10 ¹⁴	$7.4 \cdot 10^4$	
3	8	0,215	0,305	$3,6 \cdot 10^{14}$	9,3 · 10 ⁴	

Экспериментальные результаты. Для экспериментальных исследований использовались образцы из КРТ-гетероструктур, технология получения и характеристики которых описаны в [2,3], и здесь лишь отметим, что на поверхности пленки с заданным составом x выращивался слой повышенного состава толщиной ~ 0.5 мкм. Электрофизические параметры исследованных образцов приведены в табл. 1.

Образец 1 для измерения в волноводе (см. рис. 1) имел расстояние между омическими контактами ~ 2 мм и ширину 2,5 мм.

На рис. 3 приведены результаты измерений при ударной ионизации в постоянном электрическом поле (см. рис. 1, a). Начальный уровень избытка носителей $\Delta n(0)$ в конце импульса пропорционален максимуму сигнала на выходе СВЧ-детектора, и последующие значения $\Delta n(t)/\Delta n(0)$ определялись по осциллограмме при различных значениях времени t. Результаты на рис. 3 представлены в полулогарифмическом масштабе ($\ln \Delta n(t)/\Delta n(0)$) для того, чтобы релаксация $\exp(-t/\tau)$ соответствовала прямой линии, наклон которой определяет величину постоянной времени τ . Прямая I, полученная из осциллограммы при $\Delta n(0)/n_0 = 0.09$, соответствует $\tau = 0.9$ мкс, прямая 3-t=1.9 мкс и $\Delta n(0)/n_0 = 2.75$. Для сравнения приведена расчетная зависимость t=1.9 мкс и t=1.9

Как видно из рис. 1, с увеличением уровня генерации ННЗ экспоненциальный характер релаксации $\Delta n(t)$ сохраняется, причем постоянная времени τ увеличивается с ростом $\Delta n(0)$. Эти результаты трудно объяснить теоретически и можно лишь предположить, что они связаны с неоднородностью состава x по толщине пленки КРТ. В этом случае при изменении состава x будет существенно изменяться и величина времени жизни ННЗ по толщине пленки.

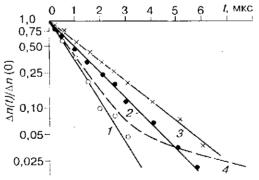


Рис. 3. Зависимости $\Delta n(t)/\Delta n(0)$, полученные из осциллограмм сиптала на выходе СВЧ-детектора после ударной ионизации в образце постоянным электрическим полем ($\tau_{\rm H}=15~{\rm nc}$):

 $I \sim \Delta n(0)/n_0 \approx 0.09$; 2 = 0.3; 3 = 2.75. Образец 1 (параметры см. в табл. 1)

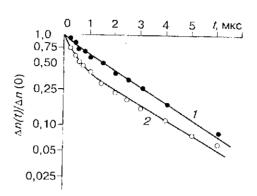


Рис. 4. Зависимости $\Delta n(t)/\Delta n(0)$, полученные из осциллограмм релаксации тока образца после ударной иопизации СВЧ электрическим полем в волноводе ($\tau_{\mu} = 400$ нс):

 $I - \Delta n(0)/n_0 = 0.28$ (P = 26 Br), $2 - \Delta n(0)/n_0 = 3.8$ (P = 360 Br). Образец 1 (параметры см. в табл. 1)

При ударной ионизации сильным электрическим полем СВЧ в волноводе (см. рис. 1,b) результаты измерений для того же образца представлены на рис. 4. При $\Delta n(0)/n_0=0.28$ ($P_{\text{CBY}}\cong 26$ Вт) прямая I соответствует $\tau=2.2$ мкс. Участок прямой 2 при $\Delta n(0)/n_0=3.8$ ($P_{\text{CBY}}\cong 360$ Вт) соответствует $\tau=2.5$ мкс, а начальный участок — $\tau\sim0.9$ мкс. Различие между результатами измерений на рис. 3 и 4 для одного и того же образца можно объяснить тем, что электрическое поле СВЧ распределяется неоднородно по толщине пленки, так как поглощаемая в образце СВЧ-мощность

$$P_{\text{CBQ}} = \frac{1}{2} \int_{0}^{d} \sigma(z, E) |E(z, \sigma)|^{2} dz.$$

Поэтому ударная ионизация в СВЧ-поле начинается в области повышенного состава x>0,22, где проводимость σ может быть существенно ниже и $E\geq E_{\rm nop}$. При увеличении СВЧ-мощности лавинная ударная ионизация расширяется на область пониженного состава, и поэтому мы наблюдаем начальный участок с $\tau\sim0,9$ мкс, которого нет при меньшей СВЧ-мощности I.

Для образцов 2 и 3 (без контактов) измерения проводились при их размешении в СВЧ-резонаторе (см. рис. 2). В этом случае трудно определить $\Delta n(0)/n_0$ без специальной калибровки измерительной схемы. Полученные из осциллограмм зависимости $\Delta u(t)$ также соответствовали $\exp(-t/\tau)$, при этом величина τ изменялась при увеличении мощности СВЧ. Результаты измерений приведены в табл. 2. Здесь также приведены и результаты повторных измерений после удаления приповерхностного слоя толщиной ~ 0.8 мкм в образце 2 и толщиной ~ 0.4 мкм в образце 3 с помощью травления.

Для этих же образцов до и после травления были проведены измерения методом релаксации фотопроводимости с использованием импульсного полупроводникового лазера ($\lambda \sim 0.92$ мкм, $\tau_{\rm u} = 0.15$ мкс) [4]. В образце 2 значения г изменялись от 0,38 до 0,7 мкс при увеличении интенсивности света в 10 раз.

Таблица 2

Обозначения		Обра	азец 2		Образец 3			
	до травления		после травления		до травдения		после травления	
P _{CBЧ} , Вт	110	340	70	380	190	380	100	295
т, мкс	0,7	1,0	0,55	0,75	1,0	0,9	0,84	1,06

После удаления приповерхностного слоя толщиной 0,8 мкм величина τ снизилась до 0,25 мкс и практически перестала зависеть от интенсивности света (при увеличении сигнала фотопроводимости более чем в 50 раз). Для образца 3 до травления величина τ изменялась от \sim 0,3 мкс при минимальной интенсивности до \sim 0,4 мкс при увеличении сигнала ФП в 50 раз. После удаления верхнего слоя (\sim 0,4 мкм) величина τ = 1,55—1,65 мкс при изменении сигнала ФП в 50 раз.

Как известно, релаксация ННЗ в пленках определяется объемной и поверхностной рекомбинациями, а также распределением избыточных носителей по толщине пленки после резкого прекращения их генерации. Эта проблема теоретически исследована для пластин кремния (см., например, [5—7]), и разработаны методы определения времени жизни носителей заряда в объеме материала и скорости поверхностной рекомбинации. В нашем случае также создавалось различное распределение ННЗ при их генерации ударной ионизацией в постоянном и СВЧ электрических полях, а также фотоионизацией. Для понимания и теоретического описания полученных результатов в данном случае требуются дополнительные исследования распределения состава и равновесной концентрации по толщине пленки КРТ. Эти исследования необходимо провести в дальнейшем для установления надлежащей методики измерения постоянной времени релаксации ННЗ, определяющей рабочие характеристики фотоприемника на основе пленок КРТ, полученных методом молекулярно-лучевой эпитаксии.

В заключение авторы выражают благодарность Ю. Г. Сидорову и В. С. Варавину за предоставленные образцы с результатами измерений их параметров (см. табл. 1).

СПИСОК ЛИТЕРАТУРЫ

- Nimtz G., Bauer G., Dornhaus and Muller K. H. Transient carrier decay and transport properties in Hg_{1-x}Cd_xTe // Phys. Rev. B. 1974. 10, N 8. P. 3302.
- 2. Varavin V. S., Dvoretsky S. A., Liberman V. I. et al. The controlled growth of high-quality moreury cadmium telluride // Thin Solid Films. 1995. 267. P. 121.
- Varavin V. S., Dvoretsky S. A., Liberman V. I. et al. Molecular beam epitaxy of high quality Hg_{1-x}Cd_xTe films with control of the composition distribution // J. Cryst. Growth. 1996. 159. P. 1161
- Бородовский П. А., Булдыгип А. Ф., Студеникин С. А. СВЧ-методы измерения параметров эпитаксиальных пленок КРТ // Автометрия. 1996. № 4. С. 59.
- Заварицкая В. А., Кудинов А. В., Миляев В. А. и др. Исследование рекомбинации неравновесных носителей в кремнии методом СВЧ // ФТП. 1984. 18, № 12. С. 2160.
- Luke K., Cheng Li-Jen. Analysis of the interaction of laser pulse with silicon wafer: Determination
 of bulk lifetime and surface recombination velocity // J. Appl. Phys. 1987. 61, N 6. P. 2282.
- Buczkowski A., Radzimski Z. J., Rozgonyi G. A., Shimura F. Separation of the bulk and surface components of recombination lifetime obtained with a single laser/microwave photoconductance technique // J. Appl. Phys. 1992. 72, N 7. P. 2873.

Поступила в редакцию 2 июня 1997 г.