РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

2007, том 43, № 4

УДК 621.315.595

ОСОБЕННОСТИ АДМИТТАНСА МДП-СТРУКТУР НА ОСНОВЕ СЛОЕВ КРТ, ПОЛУЧЕННЫХ МЕТОДОМ МОЛЕКУЛЯРНО-ЛУЧЕВОЙ ЭПИТАКСИИ

А. В. Ярцев

Институт физики полупроводников им. А. В. Ржанова СО РАН, г. Новосибирск E-mail: jartsev@ngs.ru

Исследован адмиттанс структур металл–диэлектрик–полупроводник на основе слоев $Hg_{1-x}Cd_xTe$, полученных методом молекулярно-лучевой эпитаксии на подложках из полуизолирующего GaAs. Обнаружен эффект аномальной генерации на поверхности $Hg_{1-x}Cd_xTe$ в сильном электрическом поле ($\approx 10^5$ B/cm). Показано, что плотность поверхностных состояний границы раздела КРТ–SiO₂ слабо зависит от наличия варизонного слоя и типа проводимости полупроводника.

Введение. В настоящее время основным материалом для изготовления матричных приемников излучения дальнего ИК-диапазона являются слои соединений кадмий–ртуть–теллур (КРТ), получаемые методом жидкофазной эпитаксии (ЖФЭ) [1]. Более перспективной является молекулярно-лучевая эпитаксия (МЛЭ) слоев КРТ, которая позволяет изготавливать однородные слои большого диаметра, а также выращивать вблизи границ варизонные слои, устраняющие влияние поверхностных эффектов на характеристики фотоприемников [2, 3]. Данные о поверхностных свойствах слоев КРТ МЛЭ практически отсутствуют.

Качество фоточувствительных p-n-переходов определяется их обратными токами, на величину которых решающим образом влияет состояние поверхности полупроводника, окружающей p-n-переходы. Состояние поверхности должно тщательно контролироваться. Один из эффективных методов контроля приповерхностных свойств полупроводников основан на изучении вольт-фарадных характеристик (ВФХ) и адмиттанса МДП-стурктур, однако к настоящему времени основные исследования выполнены на слоях КРТ, полученных методом ЖФЭ [4-6].

Основная задача данной работы – характеризация состояния поверхности КРТ, полученной методом МЛЭ.

Образцы и методика эксперимента. Эпитаксиальные слои КРТ выращивались на подложке из полуизолирующего GaAs [7]. Диэлектрики SiO₂ и Si₃N₄ осаждались плазмохимическим методом при температуре 90 °C. Верхний металлический электрод состоял из последовательно напыленных слоев Рис. 1. Схема профиля МДП-структуры: 1 – базовый металлический контакт (Al), 2 – диэлектрический слой толщиной около 120 нм (SiO₂ – 80 нм и Si₃N₄ – 40 нм), 3 – полевой металлический электрод (Al, Ni, Al) толщиной 200 нм

Ni, Al и Ni. Полученные МДП-структуры имеют площадь $A = 10^{-3}$ см² и схематически показаны на рис. 1.

В таблице приведены основные характеристики типичных исследованных образцов. На поверхности КРТ выращивался варизонный слой толщиной 0,5 мкм с линейно меняющимся по глубине мольным составом от x = 0,223 в объеме до $x \approx 0,5$ на поверхности. В образцах 2 и 4 перед нанесением диэлектриков варизонный слой удалялся.

Адмиттанс был измерен при температуре T = 78 К на частоте модуляции 100 кГц и амплитуде переменной составляющей 2 мВ. К управляющему электроду прикладывался потенциал V_g в диапазоне от -5 до +5 В с частотой развертки 10^{-3} Гц. Полный адмиттанс Z^{-1} измерялся по параллельной схеме подключения емкости и активного сопротивления (рис. 2, *a*): $Z^{-1} = G + i\omega C$.

Результаты измерений и их обсуждение. Результаты измерений адмиттанса представлены на рис. 3 и 4. Показано, что реактивная составляющая адмиттанса C образцов имеет низкочастотный вид за исключением структур на основе *n*-КРТ с варизонным слоем. Активная составляющая адмиттанса равна нулю в инверсии, увеличивается в обеднении, достигает максимума при переходе в область инверсии и затем плавно уменьшается при дальнейшем увеличении потенциала на полевом электроде.

В приближении равномерного распределения поверхностных состояний по энергиям в запрещенной зоне их плотность N_t может быть получена из соотношения [8]

$$N_{t} = \frac{C_{d} (V_{gi} - V_{gi0})}{e} \frac{E_{g}}{V_{i} e},$$
(1)

№ образца	Тип проводимости	Варизонный слой	Концентрация основных носителей заряда, см ⁻³	Подвижность основных носителей заряда, см ² /В· с	Время жизни, с	<i>d</i> , мкм
1	п	+	$3,5\cdot 10^{14}$	70000	$5\cdot 10^{-6}$	8,0
2	п	_	$2,2 \cdot 10^{14}$	70000	$2 \cdot 10^{-6}$	8,9
3	р	+	$4,1 \cdot 10^{15}$	490	< 8 · 10 ⁻⁹	8,7
4	р	_	$7,5 \cdot 10^{15}$	585	$< 8 \cdot 10^{-9}$	8,2

где E_g — ширина запрещенной зоны; V_i — потенциал на поверхностном электроде в начале инверсии; V_{gi} — экспериментальное значение потенциала на по-

Примечание. *d* – толщина эпитаксиального слоя КРТ.

Рис. 2. Эквивалентная схема МДП-структуры: при измерении импеданса (*a*); схема замещения МДП-структуры в режиме инверсии (*b*) (*C*_d – емкость диэлектрика, *C*₁ – емкость слоя обеднения, *G*₁ – активная проводимость, ответственная за перезарядку инверсионного слоя)

левом электроде, необходимого для перехода полупроводника из точки плоских зон в начало инверсии; V_{gi0} – теоретическое значение этого же потенциала, получаемое без учета влияния поверхностных состояний.

Разность $V_{gi} - V_{gi0}$ представляет собой уширение экспериментальной ВФХ по сравнению с теоретической. Для нахождения величины V_{gi} на экспериментальной ВФХ необходимо найти точки плоских зон и начала инверсии. Начало инверсии с хорошей точностью соответствует минимуму ВФХ, а положение плоских зон определяется как точка пересечения двух прямых, аппроксимирующих области экспериментальной ВФХ, в обогащении и обеднении полупроводника. Заметим, что погрешность данного метода не превышает 20 %.

В результате расчета из (1) получим следующие значения плотности поверхностных состояний, которые хорошо согласуются с данными исследований на образцах КРТ, полученных методом ЖФЭ [9]: $N_t^{(1)} = 3,8 \cdot 10^{11}$ см²; $N_t^{(2)} = 4,0 \cdot 10^{11}$ см⁻²; $N_t^{(3)} = 1,7 \cdot 10^{11}$ см⁻² и $N_t^{(4)} = 2,3 \cdot 10^{11}$ см⁻² для образцов 1–4 соответственно (см. таблицу). Видно, что плотность состояний границы раздела КРТ – SiO₂ слабо зависит от наличия варизонного слоя и типа проводимости полупроводника.

Электрическая схема замещения МДП-структуры в режиме инверсии приведена на рис. 2, b [10]. Проводимость G_1 имеет три основные компонен-

Рис. 3. Измеренные активная и реактивная составляющие ВФХ МДП-структур: *n*-КРТ с варизонным слоем (*a*) и без варизонного слоя (*b*)

Рис. 4. Измеренные активная и реактивная составляющие ВФХ МДП-структур: *p*-КРТ с варизонным слоем (*a*) и без варизонного слоя (*b*)

ты [10]: диффузию из объема G_{dif} , генерацию в слое обеднения G_{gr} и генерацию через поверхностные состояния G_t . При увеличении напряженности электрического поля F_s на поверхности КРТ G_{dif} и G_{gr} остаются постоянными, а G_t уменьшается по закону ~ n_s^{-1} [10], где n_s – концентрация носителей заряда в инверсионном слое. Однако в образцах 2 и 4 (без варизонного слоя) наблюдается увеличение проводимости G_1 за счет повышения F_s (рис. 5). Согласно температурным измерениям энергия активации проводимости G_1 не превышает 10 мэВ.

Аномальная генерация поверхностного заряда с низкой энергией активации ранее наблюдалась в МДП-структурах на основе других материалов (Ge, InSb) в [11–13], однако механизмы аномальной генерации, предложенные в этих работах, не могут быть применены к нашему случаю, поскольку адмиттанс структур на основе КРТ измерялся при квазиравновесном состоянии полупроводника.

Отметим, что найденный нами темп перезарядки инверсионного слоя в МДП-структурах на основе КРТ зависит от поверхностной напряженности

Рис. 5. Зависимость проводимости G_1 от напряженности электрического поля в диэлектрике: *n*-тип (*a*) и *p*-тип (*b*) без варизонного слоя

электрического поля по закону $G_1 \sim \exp(1/F_s)$, что формально соответствует туннелированию носителей заряда через треугольный барьер. В связи с этим предположим, что за аномальную генерацию ответственны «вкрапления» малой площади с высокой концентрацией встроенного заряда, расположенные на поверхности КРТ и фиксирующие поверхностный потенциал полупроводника в области сильного обогащения. При инверсии по периметру вкраплений индуцируется сильное электрическое поле, которое может стать причиной туннельного обмена носителями заряда между валентной зоной и зоной проводимости. Появление аналогичного эффекта можно ожидать в краевой области, расположенной по периметру МДП-структуры.

Для варизонных образцов явление аномальной генерации выражено значительно слабее, что объясняется более широкой запрещенной зоной КРТ вблизи границы раздела с диэлектриком.

Заключение. В работе исследован адмиттанс МДП-структур на основе слоев $Hg_{1-x}Cd_x$ Те, полученных методом МЛЭ на подложках из полуизолирующего GaAs при значении мольного состава x = 0,223, соответствующий границе фоточувствительности 10 мкм. Определено, что плотность состояний на границе раздела KPT – SiO₂ лежит в диапазоне значений (1,7–4,0) × ×10¹¹ см⁻² и слабо зависит от типа проводимости полупроводника и наличия варизонного слоя.

Впервые обнаружен эффект аномальной генерации инверсионного заряда в сильном электрическом поле F_s с низкой энергией активации в квазинеравновесных условиях на поверхности КРТ. Установлено, что в диапазоне значений $F_s = (2-9) \cdot 10^5$ В/см темп генерации следует закону $\exp(-1/F_s)$. Высказано предположение, что аномальная генерация связана с туннелированием носителей заряда на участках малой площади при высокой концентрации встроенного заряда. В дальнейшем эффект аномальной генерации необходимо учитывать при подавлении поверхностных токов фотодиодов на основе МЛЭ КРТ.

Автор выражает благодарность В. Н. Овсюку за обсуждение полученных результатов, В. В. Васильеву и Т. И. Захарьяш за изготовление МДП-структур.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рогальский А. Инфракрасные детекторы: Пер. с англ. Новосибирск: Наука, 2003.
- 2. Есаев Д. Г., Кравченко А. Ф., Осадчий В. М., Сусляков А. О. Исследование влияния варизонности эпитаксиальных слоев на эффективность работы фотодиодов на основе твердых растворов Hg_{1 x}Cd_xTe // ФТП. 2000. **34**, вып. 7. С. 877.
- 3. Васильев В. В., Дворецкий С. А., Есаев Д. Г. и др. Фотоприемники на основе слоев CdHgTe, выращенных методом молекулярно-лучевой эпитакии // Автометрия. 2001. № 3. С. 4.
- Nemirovsky Y. Tunneling and dark currents in HgCdTe photodiodes // Journ. Vac. Sci. Technol. A. 1989. 7, N 2. P. 528.
- Anderson W. W., Hoffman H. J. Surface-tunneling-induced 1/f noise in Hg_{1-x}Cd_xTe photodiodes // Journ. Vac. Sci. Technol. A. 1983. 1, N 3. P. 1730.
- Bhar R. K. Analysis of the ideality factor in surface leaky HgCdTe photodiodes for the long wavelength infrared regions // Semicond. Sci. Technol. 1997. 12. P. 448.

- 7. Овсюк В. Н., Сусляков А. О., Захарьяш Т. И. и др. Фотосопротивления на основе пленок CdHgTe, выращенных методом молекулярно-лучевой эпитаксии // Автометрия. 1996. № 4. С. 45.
- 8. Овсюк В. Н. Электронные процессы в полупроводниках. Новосибирск: Наука, 1984.
- 9. Wilson J. A. HgCdTe-SiO₂ interface structure // Journ. Vac. Sci. Technol. A. 1983. 1. P. 1719.
- 10. Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. Т. 1.
- 11. Выюков Л. А., Гергель В. А., Соляков А. М. Локальная генерация в ОПЗ МДПструктур как причина уменьшения времени релаксации с напряжением // Микроэлектроника. 1980. 9. С. 107.
- 12. **Гергель В. А., Стариков Т. И., Тишин Ю. И.** Релаксационные процессы в МДПструктурах при больших напряжениях // Микроэлектроника. 1979. **9**. С. 351.
- 13. Настаушев Ю. В., Неизвестный И. Г., Овсюк В. Н. Аномальная термополевая генерация поверхностного заряда в германиевых МДП-структурах // Поверхность. 1993. № 11. С. 116.

Поступила в редакцию 4 мая 2007 г.