РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

2008, том 44, № 1

УДК 621.315.595

ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ДИОДОВ НА ОСНОВЕ СЛОЕВ Нg_{0,78}Cd_{0,22}Te, ПОЛУЧЕННЫХ МЕТОДОМ МОЛЕКУЛЯРНО-ЛУЧЕВОЙ ЭПИТАКСИИ

А. В. Ярцев

Институт физики полупроводников им. А. В. Ржанова СО РАН, г. Новосибирск E-mail: jartsev@ngs.ru

Представлены результаты измерений вольт-амперных характеристик (ВАХ) диодов, предназначенных для приемников ИК-излучения с граничной длиной волны $\lambda_c = 11$ мкм, на основе варизонных слоев Hg_{0,78}Cd_{0,22}Te, полученных методом молекулярно-лучевой эпитаксии на полуизолирующих подложках GaAs. Определено, что основными механизмами генерации носителей заряда при напряжении обратного смещения $V_1 < -0,2$ В являются диффузионный ток и ток генерации в слое обеднения p-*n*-перехода. Показано, что хорошее совпадение расчетных и экспериментальных ВАХ достигается при учете понижения эффективной глубины залегания рекомбинационных уровней в слое обеднения вследствие эффекта Пула – Френкеля, а также при учете продольного тока.

Введение. В настоящее время твердые растворы теллурида кадмия-ртути (КРТ) являются основным материалом для изготовления ИК-фотоприемников в спектральном диапазоне 8–14 мкм [1]. Молекулярно-лучевая эпитаксия (МЛЭ) – перспективный метод получения слоев КРТ на альтернативных подложках из полуизолирующего арсенида галлия, на основе которого разработаны многоэлементные приемники с высокими характеристиками [2]. На данный момент имеется небольшое количество работ, посвященных исследованиям характеристик фотодиодов на слоях КРТ, полученных методом МЛЭ.

В предлагаемой работе представлены результаты измерений вольт-амперных характеристик (ВАХ) планарных фотодиодов на основе МЛЭ КРТ, полученных на этих слоях ионной имплантацией бора. Определены основные механизмы формирования обратных токов p-n-переходов и их роль в формировании такого важного параметра, как R_0A , где R_0 – дифференциальное сопротивление при нулевом смещении p-n-перехода и A – его площадь.

Образцы. В слое $Hg_{0,78}Cd_{0,22}$ Те *p*-типа толщиной h = 10 мкм с концентрацией дырок 7,5 $\cdot 10^{15}$ см⁻³ изготовлены области *n*-типа ионной имплантацией бора, режимы которой представлены в [3]. В результате имплантации образуется $n^+ - n^- - p$ -структура из сильнолегированного слоя *n*-типа толщиной около 1 мкм с концентрацией электронов 10^{18} см⁻³ и слаболегирован-

Рис. 1. Профиль фотодиода: 1–базовый Іп-контакт, 2–сигнальный Іп-контакт, 3–*n*⁺-слой, 4– *n*⁻-слой, 5–слой диэлектрика SiO₂ + Si₃N₄

ного слоя *n*-типа с концентрацией $2,2 \cdot 10^{14}$ см⁻³, толщина которого зависит от режима имплантации и в нашем случае составляет 3–4 мкм (рис. 1). Предполагается, что появление *n*⁻-слоя обусловлено диффузией ртути из *n*⁺-слоя. Профиль легирования получен методом послойного травления [3]. Площадь *n*⁺-слоя составляет 10×10 мкм, площадь *n*⁻-слоя равна 18×18 мкм; *n*⁻-слой полностью охватывает *n*⁺-слой.

Энергетическая диаграмма $n^+ - n^- - p$ -структуры представлена на рис. 2. Все концентрации получены из холловских измерений при T = 78 К.

Типичная темновая ВАХ p-n-переходов представлена на рис. 3 сплошной линией. Из экспериментальной ВАХ можно заключить, что основными генерационными токами при напряжении смещения до -0,2 В являются диффузионный ток I_d и ток генерации в слое обеднения p-n-перехода I_{gr} .

Диффузионный ток *p*-*n*-перехода определяется известным уравнением

$$I_d = I_s (e^{eV_1/kT} - 1), (1)$$

где V_1 – напряжение смещения, приложенное к *p*–*n*-переходу; I_s – ток насыщения, определяемый диффузией неосновных носителей заряда из ней-

Рис. 2. Энергетическая диаграмма перехода $(n^+ = 10^{18} \text{ см}^{-3}, n^- = 2,2 \cdot 10^{14} \text{ см}^{-3}, p = 7,5 \times 10^{15} \text{ см}^{-3})$

Рис. 3. Обратная ветвь ВАХ фотодиода: 1–3 – теоретические кривые (1 – генерационно-рекомбинационный ток, 2 – диффузионный ток, 3 – суммарный ток), 4 – экспериментальная кривая

тральных объемов каждого из полупроводников. В исследованных образцах диффузионный ток дырок из *n*-полупроводника на порядок меньше диффузионного тока электронов из *p*-полупроводника и им можно пренебречь. При расчете диффузионного тока следует учитывать прилегающую периферийную часть слоя КРТ, из которой собираются неосновные носители заряда за счет продольной диффузии электронно-дырочных пар в этом слое. Подобная задача была решена в работе [4] для диода цилиндрической формы, и найдено следующее выражение для диффузионного тока:

$$I_{s} = \frac{e n_{p0} D_{n}^{(p)}}{L_{n}^{(p)}} [A_{1} \tanh(x_{1} / L_{0}^{(p)}) + A_{2}^{*} k_{c}],$$
(2)

где $D_n^{(p)}$, $L_n^{(p)}$, n_{p0} – коэффициент диффузии, длина диффузии, концентрация неосновных носителей в *p*-материале соответственно; x_1 – расстояние между краем n^- -слоя и подложкой из GaAs (см. рис. 1); A_1 – площадь диода; A_2^* – эффективная площадь боковой грани диода. Полагая $L_n^{(p)} > h$, можно считать, что неосновные носители собираются со всей толщины слоя КРТ.

Коэффициент собирания k_c найден из равенства [4]

$$k_{\rm c} = \frac{K_1 \left(r / L_n^{(p)} \right)}{K_0 \left(r / L_n^{(p)} \right)},\tag{3}$$

где K_0 и K_1 – модифицированные функции Бесселя нулевого и первого порядков соответственно; r – эффективный радиус диода. При расчетах величина r выбрана таким образом, чтобы периметр реального образца совпадал с периметром кругового p–n-перехода той же толщины и радиусом r.

Генерационно-рекомбинационный ток в слое обеднения. Примем, что полупроводник содержит генерационно-рекомбинационные уровни донорного типа с концентрацией M, безразмерной энергией ε_M относительно собственного уровня Ферми и коэффициентами захвата электронов γ_n и дырок γ_p . Вследствие эффекта Пула – Френкеля глубина их залегания относительно дна зоны проводимости в электрическом поле *p*–*n*-перехода окажется меньше на величину [5]

$$\alpha = \frac{1 + e^{\beta\sqrt{F}} \left(\beta\sqrt{F} - 1\right)}{\beta^2 F} + \frac{1}{2}, \qquad (4)$$

где $\beta = (e^3 / \pi \epsilon_0 \epsilon_s)^{1/2} / kT$, *F* – напряженность электрического поля.

В нашем случае резко несимметричного p-n-перехода практически вся область пространственного заряда сосредоточена в n-полупроводнике, поэтому достаточно рассмотреть генерационный ток $j_w^{(n)}$ в слое обеднения n-полупроводника. Несложно показать, что для учета эффекта Пула – Френкеля необходимо в выражении генерации электронно-дырочных пар заменить значение сечения захвата электронов эффективным:

$$\gamma_n^* = \gamma_n \alpha \,, \tag{5}$$

где а дана в (4).

Для определения генерационно-рекомбинационного тока воспользуемся выражением, подобным найденному в [6]:

$$j_{w}^{(n)} = \frac{en_{i}L_{dn}(1 - e^{-y_{1}})}{\tau_{gr}} \int_{y_{sn}}^{0} \frac{dy_{n}}{a_{n}(y_{n})\sqrt{-y_{n}}}.$$
(6)

Здесь y_{sn} – значение безразмерного изгиба зон в слое обеднения *n*-полупроводника; $\tau_{gr} = (\tau_{n0}\tau_{p0})^{1/2}$; $y_1 = eV_1/kT$; L_{dn} – эффективная длина экранирования:

$$L_{dn} = (\varepsilon_0 \varepsilon_s kT / 2e^2 N_D)^{1/2}.$$

Функция $a_n(y_n)$ задана равенством

$$a_{n}(y_{n}) = e^{\eta_{0} + y_{n} + \xi} + e^{-(\eta_{0} + y_{n} + \xi)} e^{-y_{1}} \alpha^{-1} + e^{\varepsilon_{M} + \xi} + e^{-\varepsilon_{M} - \xi} \alpha^{-1},$$
(7)

где $\xi = \ln(\tau_{p0}/\tau_{n0})^{1/2}; \eta_0$ – положение безразмерного уровня Ферми в объеме *n*-полупроводника.

При условии $\varepsilon_M = \xi = 0$ наибольший вклад в интеграл (6) вносит тот участок y_n , в котором функция $a_n(y_n)$ минимальна и равна

$$a_{\min} = (1 + \alpha_0^{-1})(1 + e^{-y_1/2}),$$

где $\alpha_0 = \alpha (F_{\text{max}}/2) (F_{\text{max}} - \text{максимальная напряженность электрического поля}). Две величины <math>y_{1,2}$, которым соответствует $a_n(y_{1,2}) = 2a_{\min}$, имеют вид

$$y_{1,2} = \eta - \ln(1 \pm \sqrt{1 - e^{-y_1}}).$$

Интегрируя выражение (6) в пределах y_1 и y_2 , получим

$$j_{w}^{(n)} = \frac{en_{i}L_{dn}(1 - e^{-y_{1}/2})}{\tau_{gr}} \frac{2}{1 + \alpha_{0}^{-1}} (\sqrt{\eta + y_{1} + \ln(2)} - \sqrt{\eta - \ln(2)}).$$
(8)

Численный расчет показывает, что приближение (8) совпадает с точным решением для $y_1 > 6$ с погрешностью < 7 %.

Дифференциальное сопротивление. Удельное дифференциальное сопротивление описывается соотношением

$$\frac{1}{RA} = \frac{dI}{dV} = \frac{1}{(RA)_{dif}} + \frac{1}{(RA)_{g-r}}.$$
(9)

Используя (9) и (2), для удельного дифференциального сопротивления диода, обусловленного диффузионным током, получим

. ...

$$(R_0 A)_{dif} = \frac{(kT\tau_p)^{1/2}}{e^{3/2} n_{p0} (\mu_e^{(p)})^{1/2}} \frac{A_1 + A_2}{A_1 \tanh(x_1/L_e) + A_2^* k_c},$$
(10)

где τ_p – время жизни в *p*-КРТ; $\mu_e^{(p)}$ – подвижность электронов в *p*-КРТ; A_2 – геометрическая площадь боковой поверхности.

Точное решение для дифференциального сопротивления при произвольном смещении, обусловленного генерационно-рекомбинационным механизмом $(RA)_{g-r}$, может быть получено численным дифференцированием (6). Найдем приближенное выражение этого дифференциального сопротивления при нулевом смещении $(R_0A)_{g-r}$. Заметим, что функция $a^{-1}(y_n)$ в (6) имеет относительно резкий максимум при некотором значении y_{nm} . Считая функцию $(-y_n)^{-1/2}$ относительно слабой, вынесем ее за знак интеграла при значении $y_{nm} = -\eta_0$. Расчет показывает, что оставшийся интеграл равен $2/(1+\alpha_0^{-1})$. В итоге получаем

$$(R_0 A)_{g-r} = \left(\frac{e}{kT} \frac{dj_w^{(n)}}{dy_1}\right)_{y_1=0}^{-1} = \frac{kT}{e} \frac{\tau_0}{en_i L_{dn}} \frac{1+\alpha_0^{-1}}{2} \sqrt{\eta}.$$
 (11)

Из вычисления видно, что выражение (11) дает погрешность <8 % по сравнению с точным расчетом.

Сравнение с экспериментом. Теоретические кривые компонент обратного тока (3) и (8) совмещали с экспериментальной кривой (см. рис. 3), используя в качестве трех «подгоночных» параметров τ_p , $\mu_e^{(p)}$ и τ_{gr} .

Для мольного состава КРТ x = 0,223 и температуры T = 78 К ширина запрещенной зоны $E_g = 120$ мэВ [7]. Этому значению E_g соответствует собственная концентрация $n_i = 8,9 \cdot 10^{12}$ см⁻³ [2]. В *р*-материале с концентрацией акцепторов 7,5 $\cdot 10^{15}$ см⁻³ концентрация неосновных носителей составляет величину $n_{p0} = 1,06 \cdot 10^{10}$ см⁻³.

Номер образца	$\mu_e^{(p)},$ см ² /В·с	τ _p , нс	L ^(p) , мкм	k _c	τ _{gr} , мкс	$R_0A,$ Om · cm ²	$(R_0A)_{dif},$ $OM \cdot cM^2$	$(R_0A)_{g-r},$ $OM \cdot CM^2$
030630_1	60000	7	22	2,2	0,33	5,90	5,92	110
030704_2	70000	6	15	1,8	0,34	5,40	5,43	112
030925	55000	9	17	2,1	0,59	7,70	7,74	202

Площадь диода $A_1 = 3,24 \cdot 10^{-6}$ см², эффективная площадь боковой поверхности $A_2^* = 7,2 \cdot 10^{-6}$ см², геометрическая площадь боковой поверхности $A_2 = 3,6 \cdot 10^{-6}$ см², эффективный радиус диода r = 10,2 мкм.

Согласно работам [7, 8] величина $\mu_e^{(p)}$ в аналогичных образцах МЛЭ КРТ лежит в диапазоне $4 \cdot 10^4 - 10^5$ см²/В·с, а τ_p – в диапазоне 3–8 нс. В выражении (2) подбирали параметры $\mu_e^{(p)}$ и τ_p в указанных пределах до тех пор, пока при напряжениях от 0 до –15 мВ не достигалось удовлетворительное совпадение. Затем в уравнении (8) варьировали время генерации τ_{gr} до тех пор, пока в диапазоне смещений –50... –150 мВ наклон линейного участка ВАХ не совпадал с экспериментальной кривой. Результаты для трех образцов приведены в таблице.

Генерационное время жизни τ_{gr} составляет 0,3–0,6 мкс и относится к области пространственного заряда в n^- -полупроводнике. Учитывая (4), можно показать, что

$$\tau_{gr} = \frac{1}{\gamma M} (1 + \alpha^{-1}),$$

т. е. вследствие эффекта Пула – Френкеля время генерации в полупроводнике может уменьшиться не более чем в 2 раза. Полагая понижение барьера $\gg kT$ во всей области пространственного заряда и учитывая, что время жизни в полупроводнике в 2 раза меньше генерационного времени, полученные величины τ_{gr} можно сравнивать с временем жизни в *n*-КРТ. Время жизни в индуцированном *n*⁻-слое составляет 0,3–0,6 мкс, что гораздо меньше времени жизни в исходном *n*-КРТ (2–6 мкс). Такое уменьшение времени жизни можно объяснить повышенной дефектностью *n*⁻-материала, вызванной ионной бомбардировкой.

Теоретические и экспериментальная кривые дифференциального сопротивления показаны на рис. 4. При малых смещениях ($V_1 < -30$ мВ) величина RA определяется диффузионным механизмом, тогда как при смещениях $V_1 > -30$ мВ – генерационно-рекомбинационным. Характеристическая величина R_0A рассматриваемых образцов лежит в диапазоне 5–8 Ом · см², что близко к R_0A некоторых аналогов, изготовленных в планарном исполнении [9].

Заметим, что при диффузии из *p*-КРТ основной поток неосновных носителей идет из боковой части диода. В случае если фотодиоды построены не планарным способом, а путем создания мезаструктуры, то боковой диффузи-

Рис. 4. Зависимости дифференциального сопротивления *RA* от смещения фотодиода: 1–3 – теоретические кривые (1 – диффузионная составляющая, 2 – генерационно-рекомбинационная составляющая, 3 – суммарный ток), 4 – экспериментальная кривая

онный ток можно ликвидировать. При этом величина R_0A резко возрастает до 84 Ом, что сравнимо с лучшими образцами мезаструктурных фотодиодов.

Заключение. В данной работе представлены результаты измерения темновых ВАХ фотодиодов на основе слоев КРТ, полученных методом молекулярно-лучевой эпитаксии на альтернативных подложках из полуизолирующего GaAs. Показано, что в области небольших смещений (от 0 до –200 мВ) токи хорошо описываются суммой двух механизмов (диффузионного и генерационно-рекомбинационного) в слое обеднения и что при расчете диффузионного тока в случае сопоставимости длины диффузии в *p*-материале с размерами *p*–*n*-перехода необходимо учитывать эффект увеличения потока носителей с периферийной части фотодиода. Поправочный коэффициент для этого эффекта лежит в пределах 1,8–2,2. Величина R_0A рассматриваемых образцов составляет 5–8 Ом · см². При расчете генерационно-рекомбинационного тока учтено понижение глубины залегания рекомбинационного уровня вследствие эффекта Пула – Френкеля.

Автор выражает благодарность В. Н. Овсюку за поддержку работы и обсуждение полученных результатов, В. В. Васильеву и Т. И. Захарьяш за изготовление образцов фотодиодов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Овсюк В. Н., Курышев Г. Л., Сидоров Ю. Г. и др. Матричные фотоприемные устройства инфракрасного диапазона. Новосибирск: Наука, 2001.
- 2. Рогальский А. Инфракрасные детекторы: Пер. с англ. /Под ред. А. В. Войцеховского. Новосибирск: Наука, 2003.
- 3. Овсюк В. Н., Талипов Н. Х. Особенности распределения донорных центров в кристаллах CdHgTe *p*-типа при низкотемпературной имплантации // Прикладная физика. 2003. № 5. С. 87.

- 4. Grimbergen C. A. The influence of geometry on the interpretation of the current in epitaxial diodes // Solid State Electron. 1976. 19, N 12. P. 1033.
- Hartke J. L. The three-dimensional Poole–Frenkel effect // Journ. Appl. Phys. 1968. 39, N 10. P. 4871.
- 6. Sah C. T., Noyce R. N., Shockley W. Carrier generation and recombination in p-n junction and p-n junction characteristics // Proc. IRE. 1957. 45, N 6. P. 1228.
- 7. Варавин В. С., Дворецкий С. А., Костюченко В. Я. и др. Подвижность неосновных носителей заряда в пленках *p*-HgCdTe // ФТП. 2004. **38**. С. 532.
- Войцеховский А. В., Денисов Ю. А., Коханенко А. П. и др. Время жизни носителей заряда в структурах на основе Hg_{1-x}Cd_xTe (x = 0,22), выращенных методом молекулярно-лучевой эпитаксии // ФТП. 1997. **31**. С. 774.
- 9. Steckl A. J. Infrared charge coupled devices // Infrared. Phys. 1976. 16, N 1–2. P. 65.

Поступила в редакцию 23 октября 2006 г.