

 цессы колебательного характера, не всегда заранее известны присущие им периоды се-
зонности. Оценка этих периодов включается в качестве одного из этапов в задачу иден-

 дирования пространства параметров с отбором перспективных траекторий, а затем их

؛еәәәподц онинеәицо

- выбор критерия качества модели, характеризующего ее пригодность к адекватному

стохастических сезонных моделей.
Целью исследования является разработка инструментария для анализа таких про1700 года

 его быстродействие и устойчивость. Для неполных неадекватных моделей АРСС предло-

$$
\begin{aligned}
& \text { тическим данным, который может повысить точность прогноза. } \\
& \text { Ключевые слова: временные ряды, стохастические модели, ли } \\
& \text { модели, сезонные ряды, периоды сезонности, модели АРСС и АР }
\end{aligned}
$$

очнәПК【 •H• \mathcal{G}

 и составляет $(3-4) \cdot 10^{3} \mathrm{~K}$. Пятна формиру полей $\left((2-4) \cdot 10^{3}\right.$ эрстед). Их температура в $5-10$ раз меньше температуры окружающей

Пики индикаторов сезонности обычно возвышаются над выборочным спектром ста--ІЧНИҺИцәя хи NOLכOd \supset
дополнительному расширению пиков, соответствующих различным периодам сезонности, перболическому закону, т. е. почти в 2 раза больше. Эта гиперболичность приводит к

$(7 f) I=(7) \vartheta$

шкалы от традиционной, обозначим периодограмму через будут принимать значения $f_{t}=1 / t, t \in(2, N)$. Чтобы подчеркнуть отличие введенной зовать линейную временную и гиперболическую частотную шкалы. При этом частоты

 и она может принимать любое значение в интервале $(0,1 / 2)$. го спектра $I\left(f_{i}\right)$ с частоты f_{i} снимается ограничение кратности основной частоте $f=1 / N$

$$
\begin{aligned}
& 1 N
\end{aligned}
$$

$$
a_{i}=\frac{2}{N} \sum_{t=1}^{N} Z_{t} \cos 2 \pi f_{i} t, \quad i \in(1, q)
$$

[^0]
$I\left(f_{i}\right)=\frac{N}{2}\left(a_{i}^{2}+b_{i}^{2}\right), \quad i \in(1, q)$

:ルецКК Спектр мощности случайной последовательности Z_{t}, называемый иногда периодоколебаний. представляет масштабная временная единица, в которой выражаются периоды сезонных

 дикаторы же сезонных колебаний представляются величинами детерминированными и

 амплитуды. Они являют достаточно сложный и богатый возможностями объект для «от-
 Числа Вольфа обладают представительным набором периодов сезонности, в чем мы На рис. 1 представлены графически числа Вольфа за период с 1700 по 2007 годы [3].
Числа Вольфа обладают представительным набором периодов сезонности, в чем мы с годичной периодичностью имеются с 1700 года, а с ежедневной - с 1749 года [1, 2]
 учитывающий качество наблюдений и позволяющий свести их в единую систему (обычно разованных ими групп: $W=k(f+10 g)$. Здесь коэффициент k - фактор обсерватории, ональным сумме $f+10 g$, где f количество всех отдельных пятен, а g ч число обние наолюдения и организовал их регулярную регистрацию. Он предложил характери-
зовать пятнообразовательную активность Солнца специальным индексом W, пропорциДиректор обсерватории в Цюрихе Р. Вольф тщательно изучил, систематизировал ран-

Здесь \tilde{Z}_{t} - центрированный или смещенный исходный процесс, a_{t} - последовательность
В этих обозначениях мультипликативная модель АРПСС имеет вид
әпия я - 〇〇 doцedәшо е

сезонности S_{i} представим в виде

 сезонности (в том числе и единичный) для $i=1, \ldots, k ; S_{i}-$ значения периодов сезонности; аддитивной $[7]$. Обе модели задаются одинаковой структурой: k - количество интервалов [4-6]. Напомним выражения для мультипликативной модели и приведем выражение для будем описывать мультипликативной АРСС или аддитивной АРПСС сезонными моделями

əワ

 параметров происходит по закону, близкому к экспоненциальному $k=5$ и десяти базовых количество избыточных параметров будет 242 . По-видимому, $k=5$ количество избыточных параметров n_{p} равно 80 при восьми базовых параметрах, а при периодах сезонности $(k=4)$ и двух параметрах для каждого из периодов $\left(p_{i}=2, i \in(1, k)\right)$ препятствие с увеличением количества ее параметров. Как видно из (10), при четырех кое преимущество мультипликативной модели превращается постепенно в непреодолимое

 Именно это вовлечение в прогноз избыточного количества данных исходного процес-

$$
\frac{\varepsilon \varrho}{(\varepsilon) \mathrm{d} \rho}
$$

$\cdot \frac{\partial \varrho}{(\varepsilon) \mathrm{d} \supset \varrho}=\boldsymbol{n}$

для $\boldsymbol{\beta}_{\min }$ ниже задаваемого порога точности.
 сложностью выражения для самого критерия. годаря использованию операций численного дифференцирования не возникает проблем со критерия, а спуск по преобразованному - осуществить перемещение вдоль русла. Бла-

 помощью градиента Ge с последующей его нормировкой Ge* $=\mathbf{G e} /\|\mathbf{G e}\|$. Двухшаговый ного на втором шаге вектора параметров $\boldsymbol{\beta}_{\min }$, матрицы Гессе и преобразованного с ее

$$
{ }_{*} D \nabla^{\mathrm{u}_{1} \mathrm{u}_{y}}+0 \boldsymbol{\theta}={ }^{\mathrm{u} \mathrm{~m}_{\mathrm{u}}} \boldsymbol{\theta}
$$

пия чцәли LәџК9 godıәлеdeш

$$
\operatorname{ulug}_{f}<(?) f
$$

${ }^{\prime}\left(b^{\prime} \mathrm{I}\right) \ni ? \quad \operatorname{uṃu}_{f}<\left(\mathrm{I}+\operatorname{u!̣ш}_{\mathscr{Y}}\right) f$
вдоль подъема прекращается, если выполнено условие
 при этом $k L=k_{\text {min }}$. Изредка встречаются ситуации, когда минимальное значение крите-

$$
\cdot\left(b^{6} \mathrm{~L}\right) \ni ? \quad \operatorname{rụu}_{f}<\left(?-\operatorname{u!̣u}_{\mathscr{Y}}\right) f
$$

$f_{\min }$ и $k_{\min }$. Движение по спуску прекращается, если выполнено условие

 симость от исходного процесса, обеспечивая единообразие выбора параметра Δ. Процесс

$$
(* \boldsymbol{n} \nabla \underline{y}+0 \boldsymbol{g}) \mathrm{I} \bigcirc=(\mathfrak{y}) f
$$

 а символ <+» означает операцию псевдообращения Мура - Пенроуза [9]. $\frac{{ }_{L} \varepsilon \varrho \partial \varrho}{(g) \mathrm{I}_{\square} Q}=\mathbf{H}$

 нем затраченное на генерирование и уточнение параметров $\boldsymbol{\beta}_{i}$, существенно сократится тров будет отвергнута по пороговому уровню. Но несмотря на эти издержки время, в сред-

$0 \mathrm{~d} \supset>(!\cdot g) \mathrm{d} \bigcirc$

 зибәциду онин были реализованы частично при выборе генерируемых центров по минимальному значе-

 ритмом кратно количеству генерируемых центров. При больших размерах $\boldsymbol{\beta}$ это уже было случайных чисел центрами время их работы увеличилось в сравнении с прежним алго-
 -qodцнәп горитм с раздельной обработкой данных зондирования для каждого из сгенерированных Чтобы предотвратить блокирой сти. Однако вскоре обнаружилось, что при таком способе выбора на некотором этапе один

 Выбирая положение центра и размеры области сканирования, можно более тщательно вале $(0,1)$ случайных чисел.

$$
\left.{ }^{\prime}\left(u^{\prime} \mathrm{T}\right) \ni \ell \quad{ }^{\prime} G^{\prime} 0-(u(\mathrm{~L}-\imath)+\ell) u=!?\right\}
$$

$$
\text { са - области генерирования центров; } \Xi_{i} \text { вектор-столбец с компонентами }
$$ где $\boldsymbol{\beta}_{0}$ - центр ооласти сканирования; Br_{r} — диагональная матрица с элементами $b_{i}, i \in$

$\in(1, m)$, определяющими размеры симметричного относительно $\boldsymbol{\beta}_{0}$ прямоугольного бру-

$$
\Xi^{l} g+0 \boldsymbol{\theta}={ }^{l} \boldsymbol{g}
$$

с помощью датчика псевдослучайных чисел:

 работу алгоритм двухтактного скорейшего спуска. Алгоритм устойчиво работал в случае я вэцеҺонцуя яобцәше

раметров модели. прогноза, то в стохастических процессах — максимум на повышение точности оценок па-

 жения исходного процесса Z по компонентам белого шума [7])
где $V(i)=S_{2} \sum_{i} \psi_{i}^{2}$ (здесь L - интервал прогнозирования, а ψ_{i} - коэффициенты разло-

$=\frac{1}{L} \sum_{i=1}^{t} V^{(i)}$

модель признана адекватно описывающей исходный процесс Z_{t}, траекторию будем считать
реализацией стохастического процесса.

 вектора параметров β_{i}, а каждому β_{i} из допустимой ооласти значений параметров соот-
ветствует определенная траектория, связанная с исходным процессом и заданной струкОднако оказалось, что близкие значения этого критерия могут быть у различных значений
гноза процесса и фактических значений процесса на интервале прогнозной базы кватности модели описываемому ею процессу Критерии качества модели. Критерии $\operatorname{Cr}(\boldsymbol{\beta})$ обычно характеризуют степень аде-
кватности модели описываемому ею процессу. Основным критерием является средний точность прогноза на интересующем нас интервале.

$\cdot \nrightarrow ว(日)^{p} \theta=\neq 7(\mathrm{~g})^{p} \Phi$

 где p_{i} — веса в виде элементов арифметической или геометрической прогрессии, или иных

 ка лишь частично. По-видимому, имеет смысл проверить и критерии с более плавным

 описания процесса адекватной моделью АРСС. Практическое использование его для про-
 среднему квадрату этой разности можно будет судить о возможной точности представле-

 При $T_{c}=N-L$ критерий охватывает цикл активности, предшествующий прогнозу, а при

 ее поведение к фактическому процессу на некотором ограниченном интервале. Повышение
 ставляет фрагмент одной из реализаций стохастического процесса, описываемого этой

включая базовые, отвечающие основным периодам сезонности, равно 35. Им соответству-
ют сдвиги в прошлое относительно прогнозируемой точки в годах: $1,2,8,9,10,11,12,13$,
 личества параметров АР для каждого периода сезонности; $N_{q s}=(2 ; 1 ; 1 ; 1)$ _ массив $=(1 ; 8 ; 11 ; 53)$ - массив значений периодов сезонности; $N_{p s}=(2 ; 1 ; 1 ; 2)$ _ массив ко-

 периодов различных циклов. ведения чисел Вольфа, но в общих чертах модель воспроизводит вариации амплитуд и неадекватность использованной модели не позволяют более точно отследить динамику по-
 В обоснование этой гипотезы на рис. 3 приведен результат одношаговых прогнозов, полу-
ченных с помощью разностного уравнения АРСС процесса на фоне фактических данных ности ее построения. Пока же мы вынуждены лишь постулировать такую возможность.
В обоснование этой гипотезы на рис. 3 приведен результат одношаговых прогнозов, полубудет получить, построив адекватную процессу модель либо удостоверившись в невозмож-
 вомочности описания данных солнечной активности стохастической моделью АРСС или
 Операции эти трудоемки, но позволяют сочетать в различных комбинациях аддитивные
и мультипликативные модели.

 деляя иЗ Этого уравненияадекватной модели АРСС

ç
 белизны шума его нормальность вовсе не обязательна. ко к нормальному и при построении адекватной модели эта близость возрастет. Хотя для
 этому при увеличении количества градаций гистограммы она утрачивает унимодальность рис. 4 приведены гистограммы нормированной последовательности a_{t} (кривая 1) и нор-
мально распределенной случайной величины (кривая 2). Однако объем выборки мал, поРезультаты проверки белизны последовательности a_{t} иллюстрируют рис. 4-6. На
рис. 4 приведены гистограммы нормированной последовательности a_{t} (кривая 1) и норна некоторый интервал, предшествующий 1700 году Вольфа модель, можно будет попробовать спрогнозировать данные солнечной активности Модель АРСС обладает свойством обратимости и позволяет осуществлять прогноз
как в будущее, так и в прошлое. Поэтому, если удастся построить адекватную для чисел стрепа, описанной в [7] ных значении процесса для 1700 года и далее привлекались данные из предшествующего
периода, полученные с помощью искусственной процедуры «складного ножа», или бутначальный фрагмент графика. Обратим внимание на то, что при прогнозировании началь-
 В верхней части рис. 3 (кривая 1 - исходные данные, 2 - одношаговый прогноз) обладала средним значением 0,04 и средним квадратом 189,2 . $0,164-0,158-0,6630,475-0,927)$. Соответствующая этой модели последовательность a_{t} Для вектора $\boldsymbol{\beta}$ была получена оценка $\hat{\boldsymbol{\beta}}^{T}=(1,326-0,654-0,6900,712-0,633-0,226$

 значений последовательности a_{t}, полученной в процессе идентификации модели. фа получается с использованием 35 ее предшествующих значений и 23 предшествующих
 71, 72, 73. СС согласно (11) равно 23. Им соответствуют сдвиги в прошлое относительно прогнози-
руемой точки в годах: $1,2,8,9,10,11,12,13,19,20,21,52,53,54,60,61,62,63,64,65$, Количество избыточных параметров, включая базовые, для приведенного оператора
С согласно (11) равно 23. Им соответствуют сдвиги в прошлое относительно прогнози-
$19,20,21,53,54,55,61,62,63,64,65,66,72,73,74,106,107,108,114,115,116,117,118$,
$119,125,126,127$.

 ления последовательности чисел Вольфа стохастической моделью АРСС.
 интервала. граммы идеального белого шума $C_{0}(f)$ не выходит за пределы 75%-ного доверительного

 сосредоточена практически в 90%-ном доверительном интервале

 той же траектории локальной близости, но уже по данным вплоть до 2007 года.

 вая 1 - исходные данные, 2 - прогноз на 1997-2020 годы). Эта модель еще не полна,

 привлечения данных с 1997 по 2007 годы. интервальный прогноз с использованием полученного $\boldsymbol{\beta}$ по данным до 1996 года, т. е. без гноза чисел Вольфа, а на интервале с 1997 по 2007 годы, т. е. в зоне локальной близости, —
 $\hat{\boldsymbol{\beta}}^{T}=(1,469-0,7690,5870,745-0,4990,4770,295-0,0410,6310,501-0,647)$. Последова-

\[

\]

2007
-(епнго О әДәфәолие еяязои

1. http://www.wdcb.ru/stp/index.ru.html (Мировой Центр данньхх по солнечно-земной физике,
Iqd尺LVdGLИए УООИШР
 процесса к фактическим данным, что может повысить точность прогноза.
 мического зондирования.
При работе с неполн боты, позволив исключить этап первоначального уточнения параметров способом дихото-
мического зондирования.

 раметров и с раздельной обработкой

 адекватную числам Вольфа модель. лее пяти периодов сезонности, что не позволяет за один этап построить с ее помощью
 построении мультипликативной модели АРСС

Поступила в редакиию 20 мая 2008 г.

[^0]: из формул

