ОПТИЧЕСКИЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

УДК 621.383.4, 621.383.5

ТРЁХСПЕКТРАЛЬНОЕ МНОГОЭЛЕМЕНТНОЕ ФОТОПРИЁМНОЕ УСТРОЙСТВО

И. Г. Неизвестный, В. Н. Шумский

Институт физики полупроводников им. А. В. Ржанова СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 13 E-mail: shumsky@isp.nsc.ru

Описаны конструкция и характеристики трёхспектрального многоэлементного фотоприёмного устройства с диапазоном чувствительности 0,6–12,0 мкм, состоящего из трёх линеек фотоприёмников с чувствительностью в областях 0,6–0,9, 3–5 и 8–12 мкм. Приведены методы изготовления линеек, фотоприёмного устройства в целом и его фотоэлектрические характеристики.

Ключевые слова: молекулярно-лучевая эпитаксия, гетеропереход, *p*–*n*-переход, чувствительный элемент, линейка фотоприёмников, многоэлементное фотоприёмное устройство.

DOI: 10.15372/AUT20160506

Введение. В 1980-е годы требования к дальности обнаружения и надёжности распознавания объекта излучения на фоне активных и пассивных помех существенно повысились, что повлекло за собой принципиально новые требования к фотоприёмному устройству (ФПУ) — одному из главных компонентов системы. Возможным вариантом развития в этом направлении является создание многоэлементного фотоприёмного устройства (МФПУ), основанного на использовании нескольких линеек фотоприёмников (ЛФП), каждая из которых чувствительна в определённой области спектра. Применение такого МФПУ позволяет с помощью дальнейшей обработки сигнала осуществлять селекцию нужного объекта излучения по его геометрическим, скоростным и оптическим характеристикам. Разработанные нами ЛФП первого диапазона ($\lambda = 0.6-0.9$ мкм) на основе гетероперехода Ge—GaAs, $\Pi \Phi \Pi$ второго диапазона ($\lambda = 3-5$ мкм) на основе InSb и третьего диапазона ($\lambda = 8-12$ мкм) на основе твёрдого раствора $Pb_{1-r}Sn_rTe$ (COT) послужили базой для трёхспектрального МФПУ. Результаты по его созданию ранее не публиковались, и представляется, что они будут интересны не только с точки зрения описания одного из прототипов подобных устройств, но и из-за полученных величин фотоэлектрических характеристик отдельных ЛФП, которые и в настоящее время, по крайней мере для ЛФП-1, близки к лучшим мировым значениям. Такие МФПУ предназначались для функционирования в специализированных оптико-электронных системах (ОЭС), поэтому их пороговые характеристики и конструкция определялись разработчиками, которые также проводили испытания системы в целом, однако эти результаты в данную работу не вошли.

Экспериментальные результаты. Линейки фотоприёмников на основе гетеропереходов Ge—GaAs. Гетеропереходы p-Ge—n-GaAs были получены методом молекулярнолучевой эпитаксии (МЛЭ) германия на арсениде галлия [1]. Для подложек использовался арсенид галлия с концентрацией электронов $n = (1-10) \cdot 10^{15}$ см⁻³ и подвижностью $\mu_n = 5000$ см² · B⁻¹ · c⁻¹. На пластины GaAs с ориентацией (100), подвергнутые химико-

механической полировке и химической обработке в вакууме, наносился защитный слой диэлектрика SiO. В SiO вскрывались окна и методом МЛЭ выращивался слой Ge, после чего в окнах образовывались гетерофотодиоды. Часть германия удалялась, и конструкция чувствительного элемента (ЧЭ) позволяла излучению попадать как на Ge, так и на GaAs. Затем наносился второй слой диэлектрика, служивший основой для последующей металлизации. Для образования контактных площадок, разводящих дорожек и области, препятствующей попаданию излучения между ЧЭ, вакуумным осаждением наносился слой алюминия толщиной 1–1,5 мкм и проводилась соответствующая фотолитография.

Площадь элементов, из которых были изготовлены восьми
элементные ЛФП, составляла 80×80 и 50×50 мкм. На рис. 1 показаны обратные ветви вольт-амперных характеристик одного из элементов ЛФП (p-Ge—n-GaAs) площадью
 80×80 мкм без освещения (кривая 2) и при освещении
 $7.5 \cdot 10^{-8}$ Вт от источника излучения типа «А» (кривая 1).

В темноте зависимость тока от напряжения можно приблизительно записать как $i \approx U^{0,5}$, что свидетельствует о преобладании генерационно-рекомбинационного тока в арсениде галлия. При освещении ток до напряжений $U \sim 80-100$ В повышается сравнительно медленно, а затем наблюдается его быстрый рост до значений 0,1-0,2 мкА. Наиболее вероятно, что резкое увеличение фототока связано с лавинным размножением носителей заряда. Подробно свойства гетеропереходов описаны в работах [2–4]. Поскольку световое пятно от источника типа «А» попадает на все элементы, не исключена возможность того, что при больших напряжениях наступает инверсия проводимости GaAs под диэлектриком SiO и рост фототока определяется увеличением эффективной площади собирания фотоносителей и большой величиной коэффициента оптической связи между элементами линейки. Такая связь была установлена следующим способом. Один из элементов освещался зондом диаметром менее 80 мкм, измерялся сигнал от него и от последующих элементов ЛФП. Напряжение, приложенное к элементу, составляло около 60 В (фототок ~10 нА).

В таблице представлены результаты измерений при сканировании пятна излучения вдоль ЛФП. В каждой строке таблицы освещаемый элемент отмечен числом 100, а другие значения в строках отражают отношение фототока на данном элементе ЛФП к освещаемому. Из таблицы видно, что оптическая связь между освещаемым и соседними элементами не превышает 2–3 %, что соответствует оптической развязке 30–35 дБ. Проведённые расчёты показали, что оптическая связь между элементами за счёт диффузии практически отсутствует и может быть обусловлена паразитными ёмкостями между контактами корпуса ЛФП.

100	3,4	1,2	0,5	0,4	0,28	0,2	0,1
3,4	100	3,5	1,5	0,9	0,7	0,45	0,3
$1,\!5$	3	100	3	1	$0,\!5$	0,3	0,2
0,4	0,6	2,2	100	2	0,6	0,4	0,2
0,32	0,3	0,9	2,5	100	7	2,8	1,8
0,15	0,18	0,2	0,4	2	100	2	0,5
0,09	0,12	0,15	0,25	0,5	2	100	2
0,07	0,08	0,09	0,1	0,18	0,35	2	100

Оптическая связь между элементами в ЛФП-1

Линейки фотоприёмников на основе InSb и PbSnTe. В качестве ЛФП-2 использовались приборы с зарядовой инжекцией на основе МДП-структур на InSb. Подложкой служил антимонид индия марки ИСЭ-I с концентрацией носителей заряда $n = 10^{14} \text{ см}^{-3}$ и подвижностью не менее $\mu_n \ge 5 \cdot 10^5 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ при температуре 77 К. На пластины, прошедшие химико-механическую полировку и химическую обработку, методом низкотемпературного пиролитического осаждения при T = 200 °C наносился слой SiO₂ толщиной ~100 нм. Для стабилизации параметров МДП-структур на слой SiO₂ напылялся в вакууме при температуре 100 °C второй слой диэлектрика Al₂O₃. Для формирования ЧЭ применялся полупрозрачный проводящий контакт In₂O₃ + Sn₂O₃, полученный распылением мишени в атмосфере аргона. Прозрачность слоя равна 80–90 % при толщине 100 нм, а поверхностное сопротивление — примерно 1 кОм/П. Методом фотолитографии прозрачный электрод был оставлен лишь на ЧЭ. Затем вновь пиролитическим методом осаждался слой SiO₂ толщиной ~400 нм, служивший основой для последующей металлизации, которая осуществлялась алюминием. Полученные кристаллы проходили предварительную разбраковку: тестирование на отсутствие пробитых элементов и измерение релаксационных характеристик неравновесной ёмкости в режиме постоянного напряжения при T = 77 K. Характерные значения времени релаксации составляли 2-4 мс при рабочем напряжении на электроде 10–15 В и импульсе инжекции 4 В.

Линейка фотоприёмников третьего диапазона изготавливалась с помощью гетероэпитаксиального наращивания твёрдого раствора $Pb_{1-x}Sn_xTe$ на подложках BaF_2 [5] с последующим формированием *p*–*n*-переходов в СОТ. Монокристаллы BaF_2 резались на пластины с ориентацией (100), которые после механической полировки помещались в сверхвысоковакуумную камеру установки МЛЭ, где при отжиге T = 800 °C происходило улучшение структуры поверхности BaF_2 , контролируемое с помощью дифракции быстрых электронов на отражение. На отожжённой поверхности осуществлялся рост гетероэпитаксиального монокристаллического слоя $Pb_{1-x}Sn_xTe$ толщиной в несколько микрометров. После окончания роста плёнки температура подложки снижалась, и в той же камере проводилось напыление плёнки ZnS толщиной около 200 нм, а затем плёнки SiO толщиной около 150 нм. Полученный двухслойный диэлектрик обеспечивал пробивную напряжённость электрического поля не ниже 10^5 В/см. Чувствительные элементы ЛФП создавались путём напыления индия и его последующей диффузии для образования *p*–*n*-переходов [6, 7]. Дифференциальное сопротивление перехода составляло около 200 кОм.

Конструкция многоэлементного фотоприёмного устройства. На основе разработанных ЛФП была создана конструкция трёхцветного МФПУ, решающая проблему сборки трёх различных кристаллов с ЛФП. При этом габариты корпуса и ход лучей после оптической системы задавались и ограничивались размерами, приведёнными на рис. 2, где показаны схема конструкции МФПУ (рис. 2, *a*) и его внешний вид (рис. 2, *b*).

b

Puc. 2

Корпус МФПУ состоит из двух частей: неохлаждаемой 10 и охлаждаемой 13 в соответствии с рабочими температурами ЛФП-1 и ЛФП-2, ЛФП-3. В неохлаждаемой части корпуса располагаются подложка из ситалла 1, ЛФП-1 3, устройство предварительной обработки (УПО) 2, к выходным контактам которого приваривается шлейф из полиимидной плёнки 4, осуществляющий электрическое соединение УПО и внешних устройств обработки сигнала. Кроме того, устанавливается светоделитель 5, который отражает излучение в области чувствительности ЛФП-1 и пропускает ИК-излучение на ЛФП-2 и ЛФП-3.

В охлаждаемой части расположены ЛФП-2 7 и ЛФП-3 6, а также УПО-2 9 для ЛФП-2. Собранные на одном шлейфе 12 ЛФП-2, ЛФП-3 и УПО-2 устанавливаются на специальную подложку 8, обеспечивающую быстрое охлаждение ЛФП при подаче хладоагента в полость для автономной работы МФПУ. При этом для предотвращения смещения плоскостей ЛФП подложка крепится через компенсатор 11.

Сборка ЛФП и коммутаторов показана на рис. 3. Обе части корпуса изготовлены в виде отдельных деталей из полиалканимида с соответствующим наполнителем литьём под давлением. Для придания деталям необходимой механической прочности и сохранения точности их размеров части корпуса армированы фланцем специальной конфигурации, выполненным из легированной стали. Применение литья под давлением позволяет производить многократное тиражирование с высокой степенью воспроизводимости заданных размеров при довольно сложной конфигурации деталей. Юстировка МФПУ осуществляется с помощью микроскопа со специальным приспособлением и поворотным столиком. Совмещение элементов ЛФП-2 и ЛФП-3 достигается при их сборке планарными плоскостями друг к другу через полиимидный шлейф. Погрешность при стыковке не превосходит 10 мкм. Первые элементы всех ЛФП располагаются на расстоянии 50 мкм от оси МФПУ, а светоделитель — перпендикулярно этой оси.

Электронная часть МФПУ состоит из УПО-1 и УПО-2 — двух бескорпусных микросхем, изготовленных по стандартной *p*-канальной МДП-технологии на кремнии с примене-

Puc. 3

нием ионного легирования с самосогласованными поликремниевыми затворами, и содержит более 50 транзисторов. Измеренная величина спектральной плотности шума на выходе при отключённых ЛФП составила $S_U \approx 3 \cdot 10^{-7}$ В · $\Gamma \mu^{-0.5}$, что соответствует пороговой чувствительности $S_i \approx 10^{-11}$ А· $\Gamma \mu^{-0.5}$ при времени накопления 100 мс. Блок-схема устройства обработки сигнала содержит формирователь входных напряжений, преобразователь выходных сигналов и выпрямитель, от которого питаются эти два устройства. Каждый из выходных сигналов ФПУ-1 и ФПУ-2 представляет собой комбинацию фотосигналов, шумов и стационарных внутренних помех. Для выделения сигнала используются двойная коррелированная выборка, мультиплексирование и демультиплексирование с вычитанием результата демультиплексирования из результата двойной коррелированной выборки.

Для обработки сигнала с ЛФП-3 был создан преобразователь тока в напряжение с входным сопротивлением меньше 100 Ом, рабочей полосой частот до десятков килогерц, коэффициентом преобразования около 10^6 B/A и собственным шумовым током $2 \cdot 10^{-9}$ A.

Обсуждение результатов. Рассмотрим соответствие обнаружительных способностей чувствительных элементов ЛФП теоретически возможным значениям. На рис. 4 представлены спектральные зависимости обнаружительной способности ЛФП-1 (кривая 1), ЛФП-2 (кривая 2), ЛФП-3 (кривая 3) и коэффициента пропускания светоделителя (кривая 4). Видно, что в области выше 10 мкм пропускание светоделителя менее 0,6 и не превышает значения 0,8 в области до 1 мкм. Расчёты показали, что обнаружительная способность чувствительного элемента ЛФП-1 на основе гетероперехода *p*-Ge—*n*-GaAs должна составлять $D_{\lambda \max} \cong 4,5 \cdot 10^{12}$ см $\cdot \Gamma \mu^{0,5}/B$ т. Учитывая, что освещённая площадь арсенида галлия равна ~60 % от общей площади чувствительного элемента, значение обнаружительной способности уменьшается до величины $D_{\lambda \max} \cong 3,0 \cdot 10^{12}$ см $\cdot \Gamma \mu^{0,5}/B$ т, и это согласуется с экспериментом.

На момент окончания данной разработки в нашей стране не существовало ОЭС подобного класса. Конечной задачей ОЭС, в которую МФПУ входило в качестве основного компонента, являлось распознавание образов, т. е. селектирование объекта на фоне помех и ложных целей. Оптико-электронная система позволяла проводить геометрическую селек-

Puc. 4

цию объектов наблюдения: можно было выделять движущиеся и неподвижные объекты, объекты больших и малых размеров с определённой скоростью движения.

Трёхспектральность МФПУ даёт возможность производить дополнительную дешифровку объектов. Если в определённом месте пространства имеется объект, то излучение от него попадает на фотоприёмник с одинаковым номером элемента во всех трёх ЛФП. Так как объекты в каждом из трёх спектральных диапазонов излучают по-разному, сигналы от трёх фотоприёмников будут различными. Сравнительный анализ сигналов позволяет определить их соответствие тому или иному объекту.

Заключение. Разработанные многоэлементные фотоприёмные устройства были испытаны в составе оптико-электронных устройств, предназначенных для отслеживания и распознавания объектов. Следует отметить, что ОЭС при использовании описанных МФПУ слабо подвержены действию активных и пассивных помех. Натурные испытания показали, что в условиях постановки помех, вызывающих сбои в работе ОЭС с одноэлементными фотоприёмниками, оптико-электронные устройства с МФПУ работали без сбоев. Такие ОЭС продолжали отслеживать объект после того, как он скрывался за помехой размером, превышающим в десятки раз размеры объекта, и выходил из-за неё. При появлении в поле зрения двух объектов не происходило перезахвата объекта.

Авторы выражают благодарность за участие в выполнении исследований по данной тематике сотрудникам Института физики полупроводников СО РАН Ю. Н. Погорелову, В. А. Болдыреву, С. П. Супруну, П. Г. Сарафанову, О. И. Васину и А. Э. Климову.

СПИСОК ЛИТЕРАТУРЫ

- Aseev A. L., Pogorelov Yu. N., Stenin S. I., Shumsky V. N. Influence of the method of preparation on the structure and properties of Ge—GaAs heterojunctions // Thin Solid Films. 1976. 32, Is. 2. P. 351–354.
- 2. Неизвестный И. Г., Пусеп Ю. А., Синюков М. П., Шумский В. Н. Спектральная обнаружительная способность фотоприемников на основе германия в области фундаментальной полосы поглощения // Физ. и техн. полупроводников. 1980. 14, вып. 9. С. 1826–1828.
- Ламин М. А., Неизвестный И. Г., Палкин А. М. и др. Эпитаксия из молекулярных пучков и свойства гетеропереходов Ge/GaAs и Ge/Si // Микроэлектроника. 1989. 18, № 1. C. 3–8.

- 4. Белоусова Т. В., Неизвестный И. Г., Садофьев Ю. Г. и др. Надбарьерный фототок в гетеропереходах Ge—GaAs // Физ. и техн. полупроводников. 1989. 23, вып. 11. С. 1955–1960.
- 5. Васин О. И., Климов А. Э., Неизвестный И. Г., Шумский В. Н. Молекулярная эпитаксия пленок Pb_{1-x}Sn_xTe на подложках Ge, Si, GaAs, InSb, BaF₂ // Поверхность. Физика, химия, механика. 1985. № 7. С. 66–72.
- 6. Васин О. И., Климов А. Э., Неизвестный И. Г. и др. Получение чистой поверхности подложек ВаF₂ для эпитаксиального роста соединений A^{IV}B^{VI} методом молекулярно-лучевой эпитаксии // Поверхность. Физика, химия, механика. 1988. № 12. С. 55–60.
- 7. Белый В. И., Расторгуев А. А., Вицина Н. Р. и др. Электрофизические свойства мезадиодов на основе халькогенидов свинца и олова, пассивированных теллуром и сульфидом свинца // Электронная техника. 1990. Сер. 6: Материалы. С. 44–48.

Поступила в редакцию 30 марта 2016 г.