УДК 681.786.2

СПЕКТРАЛЬНЫЙ МЕТОД ОБРАБОТКИ СИГНАЛА ЛАЗЕРНОГО ЛАЛЬНОМЕРА ПОВЫШЕННОЙ ТОЧНОСТИ*

А. В. Климов, В. Г. Главный, Г. В. Бакакин, В. Г. Меледин

Институт теплофизики им. С. С. Кутателадзе СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 1 E-mail: KlimovAntonNSU@yandex.ru

Предложен спектральный метод определения частоты сигнала и показаний лазерного дальномера с частотной модуляцией опорного канала, основанный на предварительной обработке сигнала окном Гаусса и вычислении центра масс его спектральной плотности мощности. На базе численного моделирования и экспериментов с шириной полосы частотной модуляции 5–20 МГц показано, что этот метод обеспечивает на порядок лучшую точность в сравнении с классическими методами спектрального анализа.

Ключевые слова: лазерный дальномер, частотная модуляция, спектральный анализ, непараметрическое оценивание, алгоритм центра масс, окно Гаусса, повышение точности.

DOI: 10.15372/AUT20160606

Введение. Повышение точности лазерных дальномеров в значительной степени связано с развитием методов спектрального оценивания сигналов. Среди основных типов лазерных дальномеров: импульсного, фазового и частотно-модулированного (ЧМ) — последний уверенно занимает лидирующие позиции в задачах измерения дальности на малых и средних расстояниях [1]. Точность их работы особенно критична для систем безопасности и мониторинга [2], что определяет актуальность задачи улучшения характеристик ЧМ-дальномеров за счёт совершенствования методов спектрального анализа сигналов.

В лазерных ЧМ-дальномерах опорным сигналом вида $r(t) = \sin(2\pi(f_0 + (\Delta f/T)t)t)$ модулируется интенсивность оптического излучения, где Δf — ширина полосы частотной модуляции, T — период частотной модуляции, f_0 — минимальная частота модуляции. После распространения оптического сигнала до объекта и обратно, соответствующего временной задержке q = 2R/c, фотодетектор на приёмной части прибора преобразует оптическую интенсивность в электрический сигнал вида

$$r(t - q) = \sin(2\pi(f_0 + (\Delta f/T)(t - q))(t - q)).$$

После смешения сигналов r(t) и r(t-q) образуется сигнал

$$x(t) = A\sin(\omega t + \phi), \quad \omega = (4\pi\Delta f R)/(Tc),$$

а искомая дальность R до объекта оказывается пропорциональной частоте сигнала x(t).

Модель является простейшим приближением реальных физических процессов, в уточнённой модели сигнал имеет вид $\check{x}(t) = x(t) + \xi(t)$, $\xi(t)$ — случайный шум. После необхо-

^{*}Работа выполнена при поддержке Российского научного фонда (грант № 14-29-00093).

димых цифровых преобразований ищется оценка $\hat{\omega}(\check{x}[1],\ldots,\check{x}[N])$ частоты периодического сигнала с шумом ω , однозначно определяющая показания и точность ЧМ-дальномера.

Определение частоты сигнала ЧМ-дальномера относится к классу задач спектрального анализа [3]. В данной области наработан ряд непараметрических и параметрических методов, многие из которых были адаптированы для обработки сигналов ЧМ-дальномеров [4].

Устойчивые к погрешностям модели непараметрические методы определяют частоту сигнала, не учитывая предположения о его структуре. Наиболее распространён метод вычисления частоты пика спектральной плотности мощности (СПМ), получаемой преобразованием Фурье. На сегодня этот метод является базовым в ЧМ-дальнометрии [4, 5]. Его основной недостаток — ограниченная точность, во многом обусловленная дискретностью СПМ. Точность может быть улучшена за счёт интерполяции промежуточных точек между узлами СПМ [3, 5], что применялось в [5] при разработке ЧМ-дальномера. Однако существенное улучшение точности при интерполяции ограничено шумом, требует дополнительных вычислительных ресурсов и недостаточно эффективно в задачах точных измерений дальности в реальном времени.

Параметрические методы, напротив, используют предположение о структуре сигнала, заданной с точностью до параметров, и в некотором смысле подгоняют модельный сигнал с искомыми параметрами под набор данных. К этой категории относятся методы максимального правдоподобия [6], модифицированный метод Прони (Prony) [7], методы Писаренко (PHD) [3], Matrix Pencil [8] и ESPRIT [4]. Методы Писаренко, Matrix Pencil применялись при разработке ЧМ-дальномера [4, 8]. Предположение о структуре сигнала позволяет точно определить его параметры на модельных данных. Однако при неточной модели параметрические методы в отличие от непараметрических оказываются менее устойчивыми, так как не всегда предсказуемо реагируют на шумы.

В целом известные методы не обеспечивают в полной мере требуемое для определения частоты сигнала ЧМ-дальномеров сочетание высокой точности, устойчивости и вычислительной сложности. Подход, предложенный авторами и направленный на решение обозначенных проблем, основан на повышении точности быстрого устойчивого непараметрического метода.

Особенности подхода. Основой предлагаемого в данной работе подхода является известный метод вычисления центра масс СПМ сигнала [9]. Метод непараметрический, так как не использует модель и априорную информацию о сигнале. Он устойчив, поскольку базируется только на слабом предположении о симметричности фигуры СПМ с центром симметрии в пиковой частоте. Интегральный характер метода обеспечивает высокую точность определения частоты в присутствии шума. Вычислительную сложность метода можно оценить как $O(N \log N)$, что относит его к вычислительно-эффективным.

В [9, 10] исследуется метод оценивания центра масс СПМ в сочетании с оконной обработкой сигнала для определения его частоты. Эти идеи использовались в предлагаемом подходе для анализа сигнала ЧМ-дальномера с применением окна Гаусса в целях повышения гладкости СПМ сигнала и уменьшения погрешности численного интегрирования. В [4] возможность применения предложенного подхода упомянута, но совершенно не развита. Композиция метода вычисления центра масс СПМ и предварительной обработки сигнала окном Гаусса в совокупности с деталями реализации является принципиально новой в обработке сигналов ЧМ-дальномеров.

Формула центра масс для определения центра тяжести СПМ $S(\omega)$ сигнала имеет вид

$$\omega_c = \int_{-\infty}^{\infty} \omega S(\omega) d\omega / \int_{-\infty}^{\infty} S(\omega) d\omega.$$
 (1)

Дискретный аналог (1) вычисляет оценку центра тяжести СПМ:

$$\hat{\omega} = \sum_{k=L_1}^{L_2} k h_{\omega} S[k] / \sum_{k=L_1}^{L_2} S[k], \tag{2}$$

где S[k], $k=\overline{L_1,L_2}$, — отсчёты $S(\omega)$ с шагом h_ω , значения L_1h_ω , L_2h_ω выбираются в окрестности пиковой частоты ω . Рассмотрим сигнал без шума

$$x(t) = A\sin(\omega_1 t + \phi) = \frac{A}{2i}(e^{i\phi} \cdot e^{i\omega_1 t} + e^{-i\phi} \cdot e^{-i\omega_1 t}), \quad t \in [0, T],$$

и функцию Гаусса

$$n(t) = e^{-(t-T_1)^2/2\sigma^2}, \quad T_1 = T/2, \quad \sigma = T/6.$$

Ввиду критерия трёх сигм функция Гаусса n(t) близка по норме к окну Гаусса nw(t), равному n(t) при $t \in [0, T]$, и нулю иначе. Тогда можно считать, что преобразование Фурье

$$y(t) \doteqdot Y(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y(t) e^{-i\omega t} dt$$

для nw(t) такое же, как для n(t), и равно $NW(\omega)=\mathrm{e}^{iT_1\omega}\sigma\mathrm{e}^{-(\sigma^2\omega^2)/2}$.

Предположим, что ω_1 много больше ширины полосы $NW(\omega)$. Обрабатывая сигнал x(t) окном Гаусса $x_1(t) = x(t)nw(t)$ и вычисляя преобразование Фурье $x_1(t) \doteqdot X_1(\omega)$, имеем

$$X_1(\omega) = (A/2i)e^{i\phi}NW(\omega - \omega_1) + (A/2i)e^{-i\phi}NW(\omega + \omega_1).$$

Далее интерес будет представлять только окрестность частоты ω_1 . Основываясь на принятом предположении, можно отбросить второе слагаемое $X_1(\omega)$. Тогда СПМ сигнала $S_1(\omega) = (A^2/4)|NW(\omega-\omega_1)|^2$.

Утверждение 1. Центр масс $S_1(\omega)$ равен ω_1 .

Доказательство. Центр масс симметричной фигуры совпадает с центром симметрии, который для $S_1(\omega)$ равен ω_1 , откуда следует исходное утверждение.

Таким образом, алгоритм (2), действительно, вычисляет приближённо частоту ω_1 сигнала для СПМ $S_1(\omega)$. Остаётся определить числа L_1 и L_2 для алгоритма. Так как $S_1(\omega) \approx A_1 \mathrm{e}^{-\sigma^2(\omega-\omega_1)^2}, \ A_1 \in R$, и по критерию трёх сигм 99 % энергии сосредоточено на интервале $[\omega_1 - 18/(T\sqrt{2}), \omega_1 + 18/(T\sqrt{2})]$, а величина 1/T задаёт дискретное расстояние в преобразовании Фурье, то достаточно взять $L_1 = M - 13, \ L_2 = M + 13$, где M — индекс пиковой частоты в преобразовании Фурье. Если в практической реализации индекс M оказался на расстоянии $M_1 < 13$ от начала или конца выборки, то следует брать $L_1 = M - M_1$, $L_2 = M + M_1$.

Заметим, что наличие аддитивного шума $\xi(t)$, предполагаемого белым, не нарушает в основном симметричность фигуры $S_1(\omega)$, в результате чего алгоритм (2) устойчив к шуму.

Таким образом, предлагаемый метод оценки частоты сигнала ЧМ-дальномера заключается в предварительной обработке сигнала окном Гаусса, вычислении дискретного преобразования Фурье, определении пиковой частоты, выделении области из 27 точек с центром в пиковой частоте и вычислении оценки частоты алгоритмом (2).

Эффектом модификации исходного метода определения центра масс СПМ является повышение гладкости СПМ вследствие того, что функция Гаусса более гладкая, чем функция $\sin(x)$. Более гладкая СПМ приводит к уменьшению погрешности численного интегрирования и увеличению точности оценивания пиковой частоты СПМ.

Сложность алгоритма, реализующего предложенный метод, определяется сложностью преобразования Фурье и равна $O(N\log N)$. В настоящее время существуют реализации обработки сигнала в ЧМ-дальномерах на основе FPGA-технологии [11] с использованием метода Фурье. Интеграция предложенного метода в высокопроизводительную FPGA-технологию могла бы повысить точность обработки сигналов ЧМ-дальномеров.

Численное моделирование. Для доказательства эффективности метода вычисления центра масс СПМ сигнала, обработанного окном Гаусса (SC_{gw}), для ЧМ-дальномера выполнено численное сравнение с методом Фурье (FFT), методом Фурье с 32-кратным дополнением сигнала нулями (FFT_z), модифицированным методом Прони, методом Писаренко и методом вычисления центра масс СПМ сигнала, обработанного прямоугольным окном (SC_{rw}). Сравнение проводилось на данных как модельного, так и экспериментального характеров.

Модифицированный метод Прони был реализован на основе оценки коэффициентов разностного уравнения второго порядка, которому удовлетворяет сигнал x[n]. Для оценки коэффициентов использовался метод ортогональной регрессии [7].

При реализации метода Писаренко применялась его известная модификация MUSIC [3] с порядком корреляционной матрицы, равным 4. Пиковую частоту псевдоспектральной плотности мощности в данной работе искали приближённо. Для этого вычислялась оценка по методу Фурье, пространство между левым и правым дискретом относительно пиковой частоты разбивалось на сетку размером 1000 узлов, и для каждого значения вычислялась целевая функция метода MUSIC. В методах Писаренко и Прони в экспериментах предварительно удалялся внеполосовой шум для повышения отношения сигнал/шум (SNR).

В численном моделировании схемы ЧМ-дальномера параметры модели задавались следующим образом: $\Delta f=5$ МГц, $T=64{,}536$ мс, N=32768 при частоте дискретизации $F_s=1$ МГц. На анализируемый сигнал был наложен аддитивный нормальный шум.

Проведено сравнение методов на 1500 независимых численных экспериментах, в которых дальность до объекта определялась случайно: $R \in [150, 2500]$. Отношение сигнал/шум было задано 5, где SNR = σ_s/σ_n , σ_s — CKO сигнала, σ_n — CKO шума.

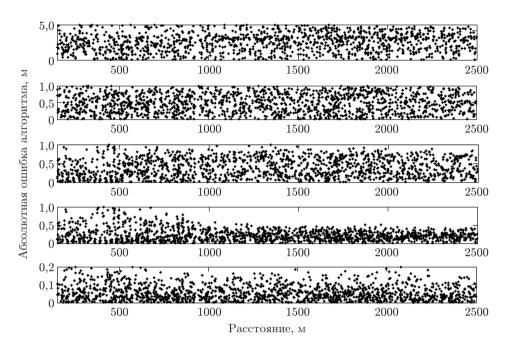
Результаты численных экспериментов представлены на рис. 1. Хорошо видно, что распределение ошибок для предложенного метода SC_{gw} намного ближе к нулю, чем аналогичные показатели других методов.

Проведено сравнение методов на 100 независимых численных экспериментах для каждой из 10 различных дальностей, взятых из интервала [820,0, 850,5] метров с равномерным шагом при SNR = 1,25.

На рис. 2 показан пример сигнала в численных экспериментах. Выбор диапазона расстояний обусловлен тем, что дискрет СПМ равен $1/T \approx 30,5$. Соответственно при последовательном моделировании расстояния в заданном диапазоне пик СПМ сигнала равномерно перемещается вдоль узла сетки СПМ, что обеспечивает разнородность данных для тестирования спектральных методов анализа сигналов.

Результаты численных экспериментов, приведённые в таблице, демонстрируют, что относительная погрешность предложенного метода $\varepsilon = (R - \bar{R})/R$ на порядок меньше ошибки остальных методов и её значение не превышает 0,01 %.

Экспериментальная проверка предложенного метода проводилась на сигналах специально разработанной электронной измерительной схемы, аппаратным образом моделирующей тракт ЧМ-дальномера. Синтезируемый передатчиком сигнал проходил через



Puc.~1. Абсолютная ошибка методов в зависимости от расстояния до объекта. Снизу вверх показаны методы: $\mathrm{SC}_{gw},$ Prony, PHD, $\mathrm{FFT}_z,$ SC_{rw}

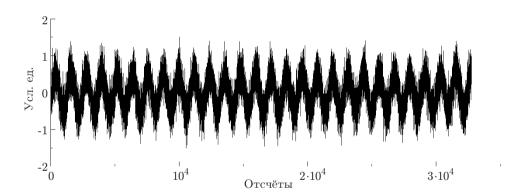
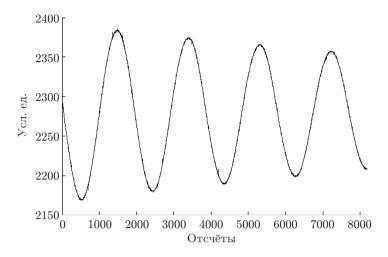


Рис. 2. Пример сигнала в численных экспериментах по тестированию методов

let was been man been summ									
Расстояние, м	SC_{rw}	Prony	PHD	FFT_z	SC_{gw}	FFT			
820,0	0,0031	0,0001	0,0007	0,0008	0,0000	0,0122			
823,3	0,0034	0,0004	0,0006	0,0003	0,0000	0,0163			
826,7	0,0005	0,0000	0,0006	0,0001	0,0000	0,0160			
830,1	0,0077	0,0005	0,0008	0,0005	0,0000	0,0118			
833,5	0,0036	0,0002	0,0003	0,0010	0,0000	0,0077			
836,9	0,0039	0,0002	0,0008	0,0008	0,0001	0,0036			
840,3	0,0004	0,0000	0,0003	0,0004	0,0000	0,0004			
843,7	0,0035	0,0002	0,0006	0,0000	0,0000	0,0044			
847,1	0,0068	0,0005	0,0001	0,0004	0,0000	0,0084			
850,5	0,0048	0,0003	0,0009	0,0009	0,0001	0,0124			

$|\varepsilon|$ для различных расстояний

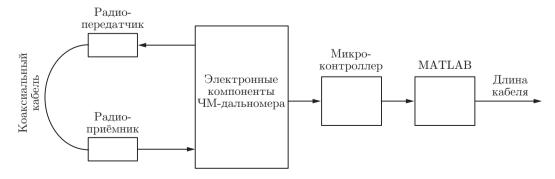


Puc. 3. Экспериментальный сигнал при аппаратном моделировании тракта ЧМ-дальномера

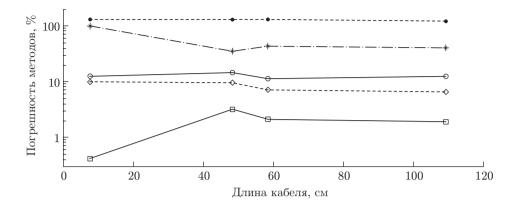
коаксиальный кабель, моделирующий задержку распространения сигнала до объекта и обратно в лазерном дальномере, и поступал на приёмник. Выходные цифровые сигналы (рис. 3) накапливались в микроконтроллере и передавались на персональный компьютер для дальнейшей обработки спектров и вычисления длины кабеля в среде МАТLAВ при тестировании методов.

Схема экспериментальной установки показана на рис. 4. Эксперименты выполнялись при следующих основных параметрах электронной схемы: $\Delta f = 20~\mathrm{MFu}$, $T = 9,216~\mathrm{Mc}$, N = 8192, $F_s = 1~\mathrm{MFu}$. При тестировании для определения разрешающей способности методов и их чувствительности к малым изменениям дальности до объекта сравнивались результаты обработки тест-сигналов на разных длинах коаксиальных кабелей. Для этого к исходному кабелю присоединялись некратные длине волны отрезки 0,077, 0,483, 0,585, 1,093 м с коэффициентом замедления скорости света 0,7. Для каждого составного кабеля было проведено 100 независимых измерений разности длин между ним и исходным кабелем. Результаты вычислений каждого из методов усреднялись по этим измерениям (рис. 5).

Относительная погрешность предложенного метода SC_{gw} при определении разницы длин кабелей не превысила 2 % и оказалась наилучшей среди тестируемых методов. Метод обеспечил на порядок лучшую точность по сравнению с проанализированными классическими методами спектрального анализа. Результаты численного и экспериментального тестирования предложенного спектрального метода обработки сигнала лазерного даль-



Puc. 4. Схема экспериментальной установки, аппаратно моделирующей тракт ЧМдальномера



Puc.~5.~ Относительная погрешность методов для различных длин кабеля $(\bullet - \mathrm{SC}_{rw}, * - \mathrm{FFT}_z, \circ - \mathrm{PHD}, \lozenge - \mathrm{Prony}, \square - \mathrm{SC}_{qw})$

номера повышенной точности подтвердили его чувствительность к малым изменениям дальности до объекта и перспективность использования.

Заключение. Предложен спектральный метод для оценивания частоты сигнала лазерного дальномера с частотной модуляцией опорного канала, основанный на предварительной обработке сигнала окном Гаусса и вычислении центра масс спектральной плотности мощности сигнала. Проведено сравнение этого метода с рядом известных методов спектрального анализа: Фурье, Прони, Писаренко и стандартным методом вычисления центра масс спектральной плотности мощности сигнала. На численной модели с шириной полосы модуляции 5 МГц показано, что ошибка предложенного метода не превышает 0,01 % при отношении сигнал/шум 1,25. В физических экспериментах на специально разработанной и реализованной аппаратной модели тракта лазерного ЧМ-дальномера с шириной полосы модуляции 20 МГц установлено, что погрешность метода не превышает 2 % и минимальна среди всех тестируемых методов. Выполненные численные и физические эксперименты показали, что данный метод обеспечивает на порядок лучшую точность в сравнении с рассмотренными классическими методами спектрального анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Amann M.-C., Bosch T., Lescure M. et al. Laser ranging: A critical review of usual techniques for distance measurement // Opt. Eng. 2001. 40, Is. 1. P. 10–19.
- 2. Hu C., Liu Y., Meng H., Wang X. Randomized switched antenna array FMCW radar for automotive applications // IEEE Trans. Vehicular Technol. 2014. **63**, Is. 8. P. 3624–3641.
- 3. Марпл-мл. С. Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990. 584 с.
- 4. **Stelzer A., Pichler M.** Resolution enhancement with model-based frequency estimation algorithms in radar signal processing // Subsurface Sensing Technol. and Appl. 2003. **4**, Is. 3. P. 241–261.
- 5. **Hyun E., Lee J.-H.** Method to improve range and velocity error using de-interleaving and frequency interpolation for automotive FMCW radars // Intern. Journ. Signal Process., Image Process. and Pattern Recogn. 2009. **2**, N 2. P. 11–21.
- 6. **Соболев В. С.** Оптимальные оценки параметров оптических сигналов. Новосибирск: Изд-во СО РАН, 2011. 135 с.
- 7. **Егоршин А. О.** Метод наименьших квадратов и быстрые алгоритмы в вариационных задачах идентификации и фильтрации (метод ВИ) // Автометрия. 1988. № 1. С. 30–42.

- 8. Olbrich S., Waldschmidt C. New pre-estimation algorithm for FMCW radar systems using the matrix pencil method // Proc. of the 12th European Radar Conference. Paris, France, 2015. P. 177–180.
- 9. Venkata Krishna Rao M. Investigation of window effects and the accurate estimation of spectral centroid // Global Journ. Res. in Eng. 2015. 15, Is. 4-J. P. 31-41.
- 10. **Климов А. В., Главный В. Г., Кротов С. В. и др.** Высокоразрешающий алгоритм для ЛЧМ-дальномера // Современные наукоёмкие технологии. 2015. № 12(5). С. 796–800.
- 11. Wang Z.-B., Moya J. C., del Campo A. B. et al. Range-Doppler image processing in linear FMCW radar and FPGA based real-time implementation // Journ. Commun. and Comput. 2009. 6, N 4. P. 55–59.

Поступила в	в редакцию	29 марто	а 2016 г.