УДК 535.8

ФОТОРЕФРАКТИВНЫЕ ИЗМЕНЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ В КРИСТАЛЛЕ LiNbO₃:Cu С ПОВЕРХНОСТНЫМ ЛЕГИРОВАНИЕМ

© Безпалый А. Д., Быков В. И., Мандель А. Е.

Томский государственный университет систем управления и радиоэлектроники, 634050, г. Томск, просп. Ленина, 40 E-mail: aleksandr.bezpalyi@tusur.ru

Экспериментально исследованы изменения показателя преломления, индуцированные в поверхностном слое кристалла ниобата лития, легированном ионами меди. Наведённые изменения индуцировались путём последовательного поточечного экспонирования экспериментального образца фокусированным лазерным излучением с длиной волны $\lambda = 532$ нм.

Ключевые слова: оптическое индуцирование, изменение показателя преломления, ниобат лития, поверхностный слой, интерферометр Жамена.

DOI: 10.15372/AUT20220206

Введение. В настоящее время разработка и создание устройств приёма, обработки и передачи информации на основе интегральной оптики и волноводной фотоники привлекает интерес многих исследователей [1–5]. Особую важность в устройствах интегральной оптики играют элементы локализации и преобразования световых сигналов, такие как волноводные и дифракционные структуры. Для реализации различных устройств фотоники на основе таких структур широко используется кристалл ниобата лития (LiNbO₃) [2–4, 6]. Объёмное или поверхностное легирование кристаллов LiNbO₃ различными примесями, такими как железо (Fe), медь (Cu), титан (Ti) или марганец (Mn), изменяет оптические и фоторефрактивные свойства кристаллов [2, 7–9]. Поверхностное легирование LiNbO₃ в отличие от объёмного позволяет внедрить различную степень концентрации ионов примесей в структуру материала на разных участках одной подложки. Это делает возможным реализацию волноводных и дифракционных структур с индивидуальными характеристиками, а также реализацию сложных топологий интегрально-оптических схем [2, 7, 10].

Формирование интегрально-оптических структур вследствие фоторефрактивного эффекта в кристаллах LiNbO₃ можно реализовать лазерным излучением [2, 6, 10–13]. Исследования наведённых лазерным излучением изменений показателя преломления в объёмнолегированных образцах LiNbO₃ и образцах без примесей проводились в [14–16].

В [14] исследования осуществлялись в объёмно-легированном кристалле LiNbO₃:Fe Y-среза с использованием интерферометра Маха — Цендера. Кристаллический образец облучался коллимированным лазерным лучом ($\lambda = 532$ нм) диаметром 0,2 мм и плотностью мощности 60 мBt/см². В [14] также показано, что наведённые изменения показателя преломления вдоль оптической оси кристалла имеют знакопеременный характер. Уровень отрицательных изменений показателя преломления после облучения кристалла в течение 60 с достигал величины $\Delta n_{\rm o} = -16 \cdot 10^{-4}$, уровень положительных изменений — величины $\Delta n_{\rm o} = 8 \cdot 10^{-4}$. В работе [15] изменения показателя преломления индуцировались в нелегированном кристалле LiNbO₃ неоднородным световым полем, которое формировалось интерферометром Майкельсона. Поляризация излучения в экспериментах соответствовала обыкновенной и необыкновенной волнам кристалла. ПЗС-камерой регистрировался сдвиг интерференционной картины за время воздействия лазерного излучения. Наведённые изменения показателя преломления в кристалле достигали уровня насыщения $\Delta n_{\rm o} = 1,2 \cdot 10^{-4}$ для обыкновенной волны и $\Delta n_{\rm e} = 6.6 \cdot 10^{-4}$ для необыкновенной волны. В [16] исследовалось влияние тепловых эффектов на индуцированные изменения показателя преломления в кристаллах LiNbO₃: Fe при непрерывном локальном облучении экспериментальных образцов излучением аргонового лазера ($\lambda = 515$ нм). Диаметр светового пятна составлял 130 мкм, плотность мощности лазера варьировалась в диапазоне от 75 Bt/cm² до 9000 Bt/cm². Влияние температуры на наведённые изменения показателя преломления Δn сказывалось при освещении образца в течение нескольких минут излучением с плотностью мощности порядка 450 Bт/см² и более. Эксперименты по освещению образцов излучением с плотностью мощности 75 Bt/cm² показали, что изменения необыкновенного показателя преломления имеют отрицательный характер и достигают величины $\Delta n_{\rm e} = -6 \cdot 10^{-4}$. При увеличении плотности мощности излучения до 9000 BT/см² изменения необыкновенного показателя преломления сменились положительными и составили $\Delta n_{\rm e} = 7 \cdot 10^{-4}$. Объясняется это тем, что при большой плотности мощности в процессе локального освещения образец нагревается, и из-за неоднородного изменения температуры нарастает пространственномодулированное положительное пироэлектрическое поле, которое компенсируется после отключения засветки отрицательным полем пространственного заряда.

Оптическое индуцирование изменений показателя преломления в кристаллах LiNbO₃ можно осуществлять различными способами, например используя амплитудную маску [10] или фокусируя лазерное излучение цилиндрической линзой [17]. В [17–19] показано, что оптическое индуцирование волноводных структур в легированных кристаллах LiNbO₃ можно осуществлять последовательным поточечным экспонированием сферической линзой, формируя световой пучок на поверхности кристалла, что позволяет задавать топологию и пространственные размеры волноводных структур в процессе их образования, а также контролировать локализацию лазерного излучения по глубине кристалла [17–20].

Целью данной работы является экспериментальное исследование изменений показателя преломления, поточечно индуцированных фокусированным лазерным излучением в легированном ионами меди поверхностном слое кристалла LiNbO₃.

Исследование изменений, индуцированных лазерным излучением в поверхностно легированном кристалле LiNbO₃. В экспериментах использовался кристалл ниобата лития X-среза размерами $1,25 \times 10 \times 14$ мм по осям X, Y и Z соответственно. Поверхностный слой кристалла был легирован ионами меди. Средняя концентрация ионов в поверхностном слое кристалла составляла $C_{\rm Cu} \approx 16,8 \cdot 10^{24}$ м⁻³ [21]. Глубина легированного слоя вдоль оси X кристалла измерялась методом зондирования лазерным лучом ($\lambda = 633$ нм) по методике, приведённой в работе [20]. Экспериментально измеренная нормированная зависимость коэффициента поглощения α от координаты X кристалла приведена на рис. 1. Как видно из графика, наибольшая часть легирующей примеси содержится в поверхностном слое кристалла толщиной $h \approx 300$ мкм.

Для поточечного формирования структур в легированном слое кристалла LiNbO₃ в качестве источника излучения использовался твердотельный YAG:Nd³⁺-лазер, работающий в непрерывном режиме с удвоением частоты ($\lambda = 532$ нм). Экспериментальный образец размещался на микрометрическом позиционере с точностью перемещения 5 мкм. Световой пучок фокусировался на поверхность образца микрообъективом (рис. 2, *a*). Диаметр светового пучка составлял ~50 мкм по уровню 0,1 максимальной интенсивности. Поляризация лазерного излучения соответствовала необыкновенной волне кристалла. Плотность мощности световой волны составляла ~500 Вт/см². Время экспенирования поверхностного слоя одним фокусированным световым пятном в разных экспериментах изменялось от 2 до 60 с. Путём индуцирования набора точек создавались области в виде полос вдоль оси *Y* кристалла с изменённым показателем преломления (рис. 2, *b*). Каждая полоса состояла из 40 точек, расположенных на расстоянии 25 мкм друг от друга.

Puc. 1. Зависимость коэффициента поглощения от глубины легирования кристалла

Puc. 2. Поточечное индуцирование изменений показателя преломления в поверхностном слое кристалла LiNbO₃:Cu: схематическое изображение процесса индуцирования(*a*); световая картина на выходной грани кристалла, полученная при зондировании поточечно индуцированных областей (*b*)

Исследования изменений показателя преломления в структурах, индуцированных в поверхностном слое LiNbO₃, проводились путём анализа интерференционных картин, образованных интерферометром Жамена. Исследуемый образец размещался в одном из плеч интерферометра. Такой анализ позволяет определить пространственный профиль индуцированных изменений показателя преломления даже при малых размерах индуцирующего светового пятна [22].

Схема экспериментальной установки для исследования наведённых в образце изменений приведена на рис. 3, а. В качестве источника излучения использовался He—Ne-лазер ($\lambda = 633$ нм) с поляризацией световой волны, параллельной оптической оси кристалла, и мощностью излучения ~1 мВт. Зондирование исследуемых структур проводилось коллимированным лазерным излучением, которое направлялось на светоделительный элемент 2, разделяющий излучение на два световых луча. Исследуемый образец 3 с индуцированными структурами помещался в одно из плеч интерферометра. Вторым зеркалом интерфе-

Puc. 3. Исследование индуцированных изменений показателя преломления в поверхностном слое кристалла LiNbO₃: схема экспериментальной установки на основе интерферометра Жамена (*a*); интерференционная картина в области изменений, индуцированных при 5-секундном экспонировании одной точки в полосе (*b*); интерференционная картина в области изменений, индуцированных при 60-секундном экспонировании одной точки в полосе (*c*)

рометра 4 совмещались световые пучки, образуя интерференционные картины, которые проецировались сферической линзой 5 на матрицу ПЗС-камеры 6, сопряжённой с компьютером 7. Примеры полученных интерферограмм для 5- и 60-секундного экспонирования поверхности образца представлены на рис. 3, b, c. Области индуцированных изменений показателя преломления отмечены пунктиром.

Величина и характер индуцированных изменений показателя преломления в кристалле изучались путём обработки полученных интерферограмм по методике, описанной в [14, 15, 23]. На рис. 4 приведён пример восстановления фазового фронта световой волны, прошедшей через область индуцированных изменений. Значения фазы определялись после фильтрации спектра, полученного путём преобразования Фурье исходных интерферограмм. Интерферограммы до и после экспонирования кристалла лазерным излучением приведены на рис. 4, a, b. В результате обратного преобразования Фурье восстанавливается изображение свёрнутой фазы с удалённой фазовой компонентой (рис. 4, c, d). Однако наличие разрывов в картинах свёрнутых фаз не позволяет точно восстановить волновой фронт в области индуцированных изменений (рис. 4, e). Устранить данные разрывы позволяет процесс разворачивания фаз. Вычитание картин с непрерывным распределением фаз до внесённых лазером изменений и после даёт возможность восстановить фазовый фронт в области индуцированных изменений показателя преломления (рис. 4, f). Приведённая на рис. 4, b интерферограмма получена при 5-секундном экспонировании одной точки индуцированной полоски.

Восстановление волнового фронта световой волны, прошедшей через индуцированную структуру, позволяет оценить величину и распределение индуцированных изменений показателя преломления. Значения изменений показателя преломления $\Delta n_{\rm e}$ вдоль оси Z кристалла при различном времени экспонирования могут быть определены по формуле [13–16],

$$\Delta n(z) = \frac{\lambda \, \Delta \varphi(z)}{2\pi d_x},\tag{1}$$

где λ — длина волны излучения в интерферометре; $\Delta \varphi(z)$ — фазовый сдвиг; d_x — глубина

Рис. 4. Этапы визуализации индуцированных изменений показателя преломления в поверхностно легированном кристалле LiNbO₃:Cu при 5-секундном экспонировании одной точки: a — интерферограмма до экспонирования кристалла; b — интерферограмма после экспонирования кристалла; c — свёрнутая фаза, полученная из интерферограммы (a); d — свёрнутая фаза, полученная из интерферограммы (b); e — разность между свёрнутыми фазами (c) и (d); f фазовый фронт волны, прошедшей через область индуцированных изменений

индуцированных изменений показателя преломления вдоль оси Х кристалла.

В формуле (1) фазовый сдвиг интерференционных полос $\Delta \varphi(z)$, вносимый областью с изменённым показателем преломления, усреднялся по всей длине индуцированной полосы. Для определения глубины индуцированных изменений d_X вдоль оси X кристалла были проведены дополнительные исследования. Вблизи торца кристалла путём поточечного экспонирования светом с длиной волны 532 нм формировались области с изменённым показателем преломления в виде полос длиной ~750 мкм. Каждая полоса состояла из 30 точек, расположенных на расстоянии 25 мкм друг от друга. Время экспонирования кристалла одним фокусированным световым пятном изменялось от 2 до 60 с.

Типичный пример интерферограмм с торцевой поверхности образца (плоскость XZ), полученных при размещении кристалла в одном из плеч интерферометра Жамена до и после индуцированных изменений, представлен на рис. 5, *a*, *b*. Пример восстановленного фазового фронта приведён на рис. 5, *c*. Индуцированные изменения показателя преломления $\Delta n_{\rm e}$ в направлении оси X кристалла, полученные в данном эксперименте при различном времени засветки, показаны на рис. 5, *d*. Максимальные индуцированные изменения показателя преломления происходят в легированном слое кристалла толщиной $d_x = 300$ мкм. На глубине 600 мкм индуцированные в кристалле изменения показателя преломления практически отсутствовали.

Значения изменений показателя преломления $\Delta n_{\rm e}$ поверхностного слоя вдоль оси Z при разном времени экспонирования рассчитывались с учётом глубины индуцированных изменений показателя преломления вдоль оси X кристалла. Индуцированные изменения показателя преломления вдоль оптической оси кристалла LiNbO₃:Cu, усреднённые по всей длине полосы с изменённым показателем преломления и при разном времени экспониро-

Рис. 5. Интерферограмма на выходном торце кристалла: a — до экспонирования YZ-поверхности; b — в области экспонированной полосы (время экспонирования одним пятном — 5 с); c — восстановленный фазовый фронт в области индуцированной полосы; d — индуцированные изменения показателя преломления Δn_e в направлении оси X кристалла

Рис. 6. Индуцированные изменения показателя преломления вдоль оптической оси кристалла LiNbO₃:Си при разном времени экспонирования одним пятном: a - 5 c; b - 10 c; c - 60 c

вания одним пятном, приведены на рис. 6.

Из представленных графиков видно, что изменения показателя преломления вдоль оптической оси кристалла имеют следующий характер: в центре освещённой области образуется провал с отрицательной величиной изменений показателя преломления, а на краях возвышенности с положительно изменённой величиной показателя преломления.

В экспериментах при поточечном экспонировании кристалла LiNbO₃:Сu значения отрицательных и положительных изменений показателя преломления достигают уровня насыщения $\Delta n_{\rm e} = -28 \cdot 10^{-4}$ и $\Delta n_{\rm e} = 7.5 \cdot 10^{-4}$ в течение 40 с. При увеличении времени освещения до 60 с уровень изменений показателя преломления практически не меняется.

Экспонирование поверхностно легированного кристалла LiNbO₃:Си фокусированным лазерным излучением приводит к существенным изменениям показателя преломления в освещённой области внутри поверхностного слоя. Поскольку плотность мощности в экспериментах не превышала 500 BT/см², вкладом температурных эффектов в изменение показателя преломления можно пренебречь [16]. Основной вклад в наведённые изменения Δn исследуемого образца обусловлен фоторефрактивным эффектом. Проведённая по экспериментально полученным значениям индуцированных изменений Δn оценка величины поля

пространственного заряда E_{sc} варьируется в пределах от $3 \cdot 10^4$ до $2 \cdot 10^5$ В/см (при разном времени экспонирования). Величина поля пространственного заряда E_{sc} совпадает с расчётными значениями, приведёнными в работах [8, 24, 25].

Заключение. Экспериментально исследованы индуцированные фокусированным лазерным излучением изменения показателя преломления в поверхностном слое кристалла LiNbO₃. При экспонировании кристалла непрерывным излучением с $\lambda = 532$ нм и необыкновенной поляризацией максимальный уровень отрицательных изменений достигал $\Delta n_{\rm e} = -28 \cdot 10^{-4}$. Показано, что величину индуцированных изменений показателя преломления можно регулировать, меняя длительность экспонирования кристалла. Пространственный профиль индуцированных изменений в локально освещённой области имеет знакопеременный характер. Полученные результаты могут быть использованы при моделировании и проектировании интегрально-оптических схем, гибридных и полностью оптических устройств.

Финансирование. Работа выполнена в рамках реализации программы стратегического академического лидерства «Приоритет 2030» (проект Пр2030-Наука СЧ/СП1/Б/8).

СПИСОК ЛИТЕРАТУРЫ

- Hitz B. C., Ewing J. J., Hecht J. Introduction to Laser Technology. 4th ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2012. 298 p.
- Bazzan M., Sada C. Optical waveguides in Lithium Niobate: Recent developments and applications // Appl. Phys. Rev. 2015. 2, N 4. P. 1–25.
- 3. Pohl D., Messner A. 100-GBd waveguide bragg grating modulator in thin-film Lithium Niobate // IEEE Photon. Technol. Lett. 2021. 33, N 2. P. 85–88.
- Chen G., Lin H.-L., Ng J. D., Danner A. J. Integrated thermally tuned Mach-Zehnder interferometer in Z-Cut Lithium Niobate thin film // IEEE Photon. Technol. Lett. 2021. 33, N 13. P. 664–667.
- Jia Yu., Chen F. Compact solid-state waveguide lasers operating in the pulsed regime: A review // Chinese Opt. Lett. 2019. 17, N 1. P. 1–23.
- Zhang B., Li L., Wu B. et al. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations // Journ. Lightwave Technol. 2021. 39, N 5. P. 1438–1443.
- Pang C., Li R., Li Z. Q. et al. A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism // Small. 2020. 16. P. 1–7.
- 8. Петров М. П., Степанов С. И., Хоменко А. В. Фоторефрактивные кристаллы в когерентной оптике. СПб: Наука, 1992. 315 с.
- 9. Wong K. K. Properties of Lithium Niobate. London, United Kingdom: INSPEC, The Institution of Electrical Engineers, 2002. 429 p.
- Davydov S. A., Trenikhin P. A., Shandarov V. M. et al. Quasione-dimensional photonic lattices and superlattices in Lithium Niobate: Linear and nonlinear discrete diffraction of light // Phys. Wave Phen. 2010. 18, N 1. P. 1–6.
- Vittadello L., Zaltron A., Argiolas N. et al. Photorefractive direct laser writing // Journ. Phys. D: Appl. Phys. 2016. 49. P. 125103.
- Zhang Q., Li M., Xu J. et al. Reconfigurable directional coupler in Lithium Niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering // Photon. Res. 2019. 7, N 5. P. 503–507.
- Tarjanyi N., Kacik D. Lithium Niobate-based integrated photonics utilizing photorefractive effect // Communications. 2017. 19, N 3. P. 77–82.

- Zhao J.-L., Zhang P., Zhou J.-B. et al. Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography // Chin. Phys. Lett. 2003. 20, N 10. P. 1748–1751.
- Fu M., Gao Ch., Wang X. et al. A method for probing the refractive index change in photorefractive crystals // Opt. Applicata. 2013. XLIII, N 4. P. 731–737.
- Buse K., Imbrock J., Krätzig E., Peithmann K. Low-spatial-frequency refractive-index changes in iron-doped Lithium Niobate crystals upon illumination with a focused continuouswave laser beam // JOSA B. 2000. 17, N 4. P. 586–592.
- Bezpaly A. D., Verkhoturov A. O., Shandarov V. M. Optical writing of channel waveguides and 1D diffraction gratings in photorefractive surface layers of Lithium Niobate // Ferroelectrics. 2017. 515, N 1. P. 34–43.
- Bezpaly A. D., Verkhoturov A. O., Shandarov V. M. Channel waveguides and phase diffraction gratings optically formed in photorefractive surface layers of Lithium Niobate // Proc. SPIE. 2017. 10603. 1060300.
- Bezpaly A. D., Shandarov V. M., Mandel A. E. et al. Optically induced channel waveguide structures with spatial modulation of parameters in the surface layer of Lithium Niobate // Rus. Phys. Journ. 2019. 62, N 3. P. 387–392.
- Jia Yu., Chen F. Compact solid-state waveguide lasers operating in the pulsed regime: A review // Chinese Opt. Lett. 2019. 17, N 1. P. 1–23.
- Mambetova K. M., Shandarov S. M., Orlikov L. N. et al. Formation of dynamic photorefractive gratings in a LiNbO₃:Cu surface-doped crystal // Opt. and Spectroscopy. 2019. 126, N 6. P. 781–786
- 22. Althoff O., Erdmann A., Wiskott L., Hertel P. The photorefractive effect in LiNbO₃ at high light internsity // Phys. Status Solidi (a). 1991. **128**, N 1. P. K41–K46.
- 23. Ghiglia D. C., Romero L. A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods // JOSA A. 1994. 11, N 1. P. 107–117.
- Günter P., Huignard J.-P. Photorefractive Materials and Their Applications 2. Berlin: Springer Series in Optical Sciences, 2007. 640 p.
- 25. Стурман Б. И., Фридкин В. М. Фотогальванический эффект в средах без центра симметрии и родственные явления М.: Наука, 1992. 208 с.

Поступила в редакцию 11.02.2022 После доработки 11.03.2022 Принята к публикации 11.03.2022