УДК 519.7

БЫСТРЫЙ ВЫБОР КОЭФФИЦИЕНТОВ РАЗМЫТОСТИ НЕПАРАМЕТРИЧЕСКОЙ ОЦЕНКИ ПЛОТНОСТИ ВЕРОЯТНОСТИ ДВУХМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ С ЗАВИСИМЫМИ КОМПОНЕНТАМИ

© А. В. Лапко^{1,2}, В. А. Лапко^{1,2}

¹Институт вычислительного моделирования СО РАН, 660036, г. Красноярск, Академгородок, 50, стр. 44 ²Сибирский государственный университет науки и технологий им. академика М. Ф. Решетнева, 660037, г. Красноярск, просп. им. газеты «Красноярский рабочий», 31 *E-mail: lapko@icm.krasn.ru*

Предложена методика быстрого выбора коэффициентов размытости ядерных функций в непараметрической оценке двухмерной случайной величины с зависимыми компонентами. Методика основана на результатах анализа асимптотических свойств ядерной оценки плотности вероятности Розенблатта — Парзена. Исследованы свойства быстрого алгоритма выбора коэффициентов размытости в рассматриваемой непараметрической оценке плотности вероятности.

Ключевые слова: непараметрическая оценка плотности вероятности двухмерной случайной величины, зависимые случайные величины, ядерная оценка плотности вероятности, быстрый выбор коэффициентов размытости.

DOI: 10.15372/AUT20230204

Введение. Непараметрические оценки плотности вероятности типа Розенблатта — Парзена $\bar{p}(x)$ используются при разработке алгоритмов принятия решений в условиях априорной неопределённости [1–3]. Аппроксимационные свойства $\bar{p}(x)$ определяются выбором оптимальных значений коэффициентов размытости ядерных функций. Традиционный подход к оптимизации непараметрической оценки плотности вероятности состоит в минимизации статистической оценки её среднего квадратического отклонения. Вычислительная эффективность этого подхода снижается при увеличении объёма исходных статистических данных [4–8]. Для решения этой проблемы предложены методики быстрого выбора коэффициентов размытости ядерных функций, основанные на анализе результатов исследования асимптотических свойств непараметрической оценки плотности вероятности для ряда семейств законов распределения случайных величин [9–14].

В работе [15] обоснована возможность выбора коэффициентов размытости ядерных функций в непараметрической регрессии из условия минимума оценок средних квадратических ошибок аппроксимации плотности вероятности зависимых случайных величин. Созданы условия значительного повышения вычислительной эффективности непараметрической регрессии на основе быстрых процедур выбора коэффициентов размытости в ядерной оценке плотности вероятности зависимых случайных величин.

Цель данной работы — исследование методики быстрого выбора коэффициентов размытости ядерных функций непараметрической оценки плотности вероятности двухмерной случайной величины с зависимыми компонентами.

Методика быстрого выбора коэффициентов размытости непараметрической оценки плотности вероятности зависимых случайных величин. Пусть имеется выборка $V = (x^i, y^i, i = \overline{1, n})$ статистически независимых наблюдений случайных величин x, y, распределённых с неизвестной плотностью вероятности p(x, y). При оценивани
и p(x,y) используем непараметрическую статистику $\bar{p}(x,y)$ типа Розенблатта — Парзена [16, 17]:

$$\bar{p}(x,y) = \frac{1}{nc_1c_2} \sum_{i=1}^n \Phi\left(\frac{x-x^i}{c_1}\right) \Phi\left(\frac{y-y^i}{c_2}\right).$$
(1)

Ядерные функции $\Phi(u)$ в непараметрической оценке плотности вероятности (1) удовлетворяют условиям:

$$\Phi(u) = \Phi(-u), \qquad 0 \leqslant \Phi(u) < \infty, \qquad \int \Phi(u) \, du = 1, \qquad \int u^2 \Phi(u) \, du = 1,$$
$$\int u^m \Phi(u) \, du < \infty, \qquad 0 \leqslant m < \infty.$$

Здесь и далее бесконечные пределы интегрирования опускаются.

Значения коэффициентов размытости c_1 , c_2 в непараметрической оценке плотности вероятности (1) зависят от интервала изменений случайных величин x и y. Поэтому примем $c_1 = c\sigma_1$, $c_2 = c\sigma_2$, где σ_1 , σ_2 — средние квадратические отклонения случайных величин x, y соответственно, а c — неопределённый параметр.

Тогда асимптотическое выражение среднего квадратического отклонения $\bar{p}(x,y)$ от p(x,y)

$$W(c) = M \iint (\bar{p}(x,y) - p(x,y))^2 \, dx \, dy$$

с учётом результатов работы [16] запишем в виде

$$\bar{W}(c) = \frac{1}{nc^2\sigma_1\sigma_2} \|\Phi(u_1)\|^2 \|\Phi(u_2)\|^2 + \frac{c^4}{4} B.$$
(2)

Здесь приняты следующие обозначения:

$$\|\Phi(u_1)\|^2 = \int \Phi^2(u_1) \, du_1; \qquad \|\Phi(u_2)\|^2 = \int \Phi^2(u_2) \, du_2;$$

$$B = \iint (\sigma_1^2 p_1^{(2)}(x, y) + \sigma_2^2 p_2^{(2)}(x, y))^2 \, dx \, dy;$$
(3)

 $p_1^{(2)}(x,y), p_2^{(2)}(x,y)$ — вторые производные функции p(x,y) по переменным x,y соответственно; M — знак математического ожидания.

Оптимальное значение параметра c коэффициентов размытости c_1 , c_2 ядерных функций непараметрической оценки плотности вероятности (1)

$$c^* = (2(\|\Phi(u)\|^2)^2 / (nB\sigma_1\sigma_2))^{1/6}$$
(4)

определим из условия минимума критерия (2) для ядерных функций $\Phi(u_v) = \Phi(u), v = 1, 2.$

С учётом ранее принятых предположений оптимальные коэффициенты размытости c_1, c_2 ядерных функций в статистике (1) запишем как

$$c_v^* = c^* \sigma_v = \beta \sigma_v n^{-1/6}, \qquad v = \overline{1, 2},$$
(5)

где

$$\beta = (2(\|\Phi(u)\|^2)^2 / (B\sigma_1\sigma_2))^{1/6}.$$
(6)

Для вычисления оптимального параметра c^* коэффициентов размытости ядерных функций (4) необходимо определить оценку нелинейного функционала $\lambda = B\sigma_1\sigma_2$ от вторых производных плотности вероятности p(x, y) по переменным x, y.

Используем семейство нормальных законов распределения зависимых случайных величин x и y:

$$p(x,y) = (2\pi\sigma_1\sigma_2\sqrt{1-r^2})^{-1} \times$$

$$\times \exp\Big\{-\frac{1}{2(1-r^2)}\Big[\Big(\frac{x-m_1}{\sigma_1}\Big)^2 - 2r\frac{(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \Big(\frac{y-m_2}{\sigma_2}\Big)^2\Big]\Big\},\tag{7}$$

где (m_1, σ_1) и (m_2, σ_2) — математические ожидания и средние квадратические отклонения случайных величин x и y соответственно; неопределённые вещественные числа r подчиняются условию $-1 \leq r \leq 1$.

Нормальные распределения типа (7) часто встречаются в различных прикладных задачах. Значимость нормального закона распределения объясняется тем, что анализируемая случайная величина, являющаяся суммой большого числа независимых помех, имеет закон распределения, близкий к нормальному [18].

На этой основе методика быстрого выбора коэффициентов размытости ядерных функций в непараметрической оценке плотности вероятности (1) состоит в выполнении следующих действий:

1. По исходной выборке $V = (x^i, y^i, i = \overline{1, n})$, которая имеется при восстановлении p(x, y), оценить средние квадратические отклонения σ_1, σ_2 случайных величин x, y и параметра r, например, как коэффициента корреляции между ними. Обозначим через $\overline{\sigma}_1, \overline{\sigma}_2$ и \overline{r} статистические оценки параметров σ_1, σ_2 и r.

2. При конкретном объёме n выборки V и выбранном виде ядерной функции $\Phi(u)$ в соответствии с формулами (4) и (7) определить оценку параметра

$$\bar{c}^* = (2(\|\Phi(u)\|^2)^2 / (n\bar{B}\bar{\sigma}_1\bar{\sigma}_2))^{1/6}$$

коэффициентов размытости ядерных функций c_1, c_2 в статистике $\bar{p}(x, y)$ (1). Здесь значение \bar{B} вычислим в соответствии с выражением (3) при $\sigma_1 = \bar{\sigma}_1, \sigma_2 = \bar{\sigma}_2, r = \bar{r}$. В качестве \bar{r} используем статистическую оценку коэффициента корреляции.

3. Определить оценки коэффициентов размытости c_1 , c_2 в ядерных функциях в непараметрической статистике (1):

$$\bar{c}_1^* = \bar{c}^* \bar{\sigma}_1, \qquad \bar{c}_2^* = \bar{c}^* \bar{\sigma}_2.$$

Анализ результатов вычислительных экспериментов. Исследуем зависимость оптимальных коэффициентов размытости c_1^* , c_2^* непараметрической оценки плотности вероятности $\bar{p}(x, y)$ (1) от составляющих их параметров c^* , β и λ . Проведём анализ зависимости асимптотического выражения среднего квадратического отклонения $\bar{W}(c^*)$ от значений параметра r плотности вероятности p(x, y) (7). При организации вычислительных экспериментов положим, что для зависимых случайных величин x и y значения их средних квадратических отклонений $\sigma_1 = 1$ и $\sigma_2 = (1, 2, 3)$.

Таблица 1

r	σ_2	λ	β	<i>c</i> *	c_1^*	c_2^*	$\bar{W}(c^*)$
	1			$0,449 \\ 0,344$		$0,449 \\ 0,344$	0,005346 0,001828
0,175	2	0,175	0,968	$0,505 \\ 0,386$	$0,449 \\ 0,344$	$0,899 \\ 0,687$	$\begin{array}{c} 0,002829 \\ 0,0009674 \end{array}$
	3			$0,54 \\ 0,413$		$1,348 \\ 1,031$	$0,002059 \\ 0,0007043$
	1			$0,445 \\ 0,34$		$0,\!445 \\ 0,\!34$	$0,005458 \\ 0,001866$
0,225	2	0,186	0,958	$0,499 \\ 0,382$	$0,445 \\ 0,34$	$0,89 \\ 0,68$	0,002888 0,0009876
	3			$0,534 \\ 0,409$		$1,\!335 \\ 1,\!021$	$0,002102 \\ 0,0007189$
	1			$0,442 \\ 0,338$		$0,442 \\ 0,338$	$0,005526 \\ 0,00189$
0,25	2	0,193	0,952	$0,496 \\ 0,379$	$0,442 \\ 0,338$	$0,884 \\ 0,676$	$0,002924 \\ 0,001$
	3			$0,531 \\ 0,406$		$1,\!326 \\ 1,\!014$	$0,002129 \\ 0,000728$
	1			$0,439 \\ 0,336$		$0,\!439 \\ 0,\!336$	$0,005603 \\ 0,001916$
0,275	2	0,201	0,946	$0,493 \\ 0,377$	$0,439 \\ 0,336$	$0,878 \\ 0,671$	$0,002965 \\ 0,001014$
	3			$0,527 \\ 0,403$		$1,317 \\ 1,007$	0,002158 0,0007381
	1			$0,432 \\ 0,33$		$0,432 \\ 0,33$	0,005787 0,001979
0,325	2	0,221	0,931	$0,485 \\ 0,371$	$0,432 \\ 0,33$	$0,864 \\ 0,661$	$\begin{array}{c} 0,003062 \\ 0,001047 \end{array}$
	3			$0,519 \\ 0,397$		$1,\!296 \\ 0,\!991$	$0,002229 \\ 0,0007623$

Результаты анализа аппроксимационных свойств непараметрической оценки плотности вероятности $\bar{p}(x,y)$ зависимых случайных величин x, y

Продолжение таблицы 1

r	σ_2	λ	β	c^*	c_1^*	c_2^*	$\bar{W}(c^*)$
	1			$0,391 \\ 0,299$		$0,391 \\ 0,299$	0,007079 0,002421
0,525	2	0,405	0,842	$0,438 \\ 0,335$	$0,391 \\ 0,299$	$0,781 \\ 0,597$	$0,003746 \\ 0,001281$
	3			$0,469 \\ 0,359$		$1,172 \\ 0,896$	$\begin{array}{c} 0,002727 \\ 0,0009325 \end{array}$
	1			$0,342 \\ 0,262$		$0,342 \\ 0,262$	$\begin{array}{c} 0,009212 \\ 0,003151 \end{array}$
0,675	2	0,894	0,738	$0,384 \\ 0,294$	$0,342 \\ 0,262$	$0,\!685 \\ 0,\!524$	0,004875 0,001667
	3			$0,411 \\ 0,314$		$1,027 \\ 0,786$	$\begin{array}{c} 0,003549 \\ 0,001214 \end{array}$
	1			$0,31 \\ 0,237$		$0,31 \\ 0,237$	0,011 0,003834
0,75	2	1,611	0,669	$0,348 \\ 0,266$	$0,31 \\ 0,237$	$0,621 \\ 0,475$	$\begin{array}{c} 0,005932 \\ 0,002029 \end{array}$
	3			$0,373 \\ 0,285$		$0,931 \\ 0,712$	$0,004318 \\ 0,001477$
	1			$0,27 \\ 0,207$		$0,27 \\ 0,207$	$0,015 \\ 0,005059$
0,825	2	3,701	0,582	$0,303 \\ 0,232$	$0,27 \\ 0,207$	$0,54 \\ 0,413$	$0,007828 \\ 0,002677$
	3			$0,324 \\ 0,248$		$0,811 \\ 0,62$	$0,005698 \\ 0,001949$
	1			$0,122 \\ 0,093$		$0,122 \\ 0,093$	$0,072 \\ 0,025$
0,975	2	433,4	0,263	$0,137 \\ 0,105$	$0,122 \\ 0,093$	$0,\!244 \\ 0,\!187$	$0,038 \\ 0,013$
	3			$0,147 \\ 0,112$		$0,366 \\ 0,28$	$0,028 \\ 0,009535$

Определим значения параметра $\bar{r} = r \pm \alpha r$ при известных r = 0.25 и r = 0.75. Значения $\alpha = 0.1$, $\alpha = 0.3$ характеризуют погрешности оценивания r. Например, при r = 0.25 и $\alpha = 0.1$ значения $\bar{r} = 0.225$, $\bar{r} = 0.275$ соответственно.

Верхние строки элементов табл. 1 в столбцах c^* , c_1^* , c_2^* , $\bar{W}(c^*)$ соответствуют объёму статистических данных n = 100, а нижние — n = 500.

Значения функционала λ при конкретных значениях параметра r не зависят от объёма n статистических данных и изменения $\sigma_2 \in [1;3]$. Например, при r = 0,175 значение $\lambda = 0,175$ для $n \in [100;500]$, а при r = 0,75 в принятых условиях $\lambda = 1,611$. С ростом коэффициента корреляции r значения функционала λ увеличиваются от 0,175 при r = 0,175 до 1,611 при r = 0,75. При r = 0,975 наблюдается значительное увеличение λ до 433,4, что может служить одним из критериев линейной зависимости между случайными величинами (см. табл. 1).

Зависимость функционала β (6) от значений параметров r и σ_2 является близкой к вышеотмеченной зависимости $\lambda = B\sigma_1\sigma_2$. Для $\sigma_2 \in [1;3]$ и $n \in [100;500]$ значения $\beta = 0,968$, $\beta = 0,669$ при r = 0,175, r = 0,75 соответственно. При зависимости между случайными величинами, близкой к линейной (r = 0,975), значение $\beta = 0,263$ для $\sigma_2 \in [1;3]$ и $n \in [100;500]$. Оптимальные значения параметра c^* коэффициентов размытости c_1^* , c_2^* (4) зависят от r, σ_2 и объёма статистических данных n. При фиксированных значениях r с ростом σ_2 значения параметра c^* увеличиваются. Например, при r = 0,175 и n = 100 значения $c^* = 0,449$, $c^* = 0,54$ в условиях $\sigma_2 = 1$, $\sigma_2 = 3$ соответственно. С увеличением r и n значения c^* уменьшаются, что особенно проявляется при r = 0,975 и n = 500. В этих условиях $c^* \in [0,093;0,112]$ для $\sigma_2 \in [1;3]$ (см. табл. 1).

Сравним аппроксимационные свойства непараметрической оценки плотности вероятности $\bar{p}(x, y)$ в зависимости от погрешности оценивания коэффициента корреляции r, используя результаты вычислительных экспериментов (см. табл. 1). Для этого вычислим отношение $\bar{W}(\bar{c}^*)/\bar{W}(c^*)$ для различных значений \bar{r} и r = 0.25, r = 0.75 при $\alpha = 0.1$, $\alpha = 0.3$. Здесь значения $\bar{W}(\bar{c}^*)$, $\bar{W}(c^*)$ определим по формуле (2) при значениях \bar{r} и r, где параметр r считается известным, а \bar{r} — его предполагаемая оценка.

Вычислим аналитические выражения отношений \bar{c}^*/c^* и $\bar{W}(\bar{c}^*)/\bar{W}(c^*)$ с учётом принятых условий исследования. Используя формулы (4), (2), имеем

$$\bar{c}^*/c^* = (B(r)/B(\bar{r}))^{1/6},$$
(8)

$$\bar{W}(\bar{c}^*)/\bar{W}(c^*) = (B(\bar{r})/B(r))^{1/3},$$
(9)

где \bar{c}^* — значение c^* (4) при $r = \bar{r}$.

Результаты анализа выражений (8), (9) представлены в табл. 2.

При известном малом значении r = 0.25 и относительно больших погрешностей его оценивания $0.175 \leq \bar{r} \leq 0.325$ отношение $\bar{c}^*/c^* \in [1,017;0.977]$, а соответствующие им значения $\bar{W}(\bar{c}^*)/\bar{W}(c^*) \in [0.967;1.047]$. При малых r и больших значениях параметра погрешностей их оценивания $\alpha \in [0,1;0.3]$ аппроксимационные свойства непараметрической оценки плотности вероятности $\bar{p}(x,y)$ зависимых случайных величин изменяются незначительно. С увеличением параметра r аппроксимационные свойства $\bar{p}(x,y)$ снижаются. Например, при известном значении r = 0.75 и $\alpha = 0.1$ $\bar{c}^*/c^* \in [1,103;0.871]$, а $\bar{W}(\bar{c}^*)/\bar{W}(c^*) \in [0.822;1.32]$. При $\alpha = 0.3$ эти показатели аппроксимационных свойств $\bar{p}(x,y)$ значительно снижаются (см. табл. 2).

Отсюда следует, что при малых значениях r, характерных для нелинейных зависимостей между x, y в условиях достаточно больших параметров помех α , целесообразно принимать значения $c_1 = c\sigma_1, c_2 = c\sigma_2$. При бо́льших значениях $\bar{r} > 0,825$ соблюдение этого условия сопряжено со значительным ухудшением свойств $\bar{p}(x, y)$.

Результаты сравнения аппроксимационных свойств $ar{p}(x,y)$ от погрешности оценивания
коэффициента корреляции

$ar{r}$	$B(\bar{r})/B(r)$	\overline{c}^*/c^*	$ar{W}(ar{c}^*)/ar{W}(c^*)$
$0,\!175$	0,906	1,017	0,967
0,225	0,963	1,006	$0,\!988$
0,275	1,042	0,993	1,014
0,325	1,048	0,977	1,047
0,525	0,252	1,258	0,631
$0,\!675$	0,555	1,103	0,822
0,825	2,298	0,871	1,32
0,975	269,108	0,394	$6,\!456$

Заключение. Для упрощения задачи оптимизации непараметрической оценки плотности вероятности двухмерной случайной величины с зависимыми компонентами целесообразно представлять коэффициенты размытости ядерных функций в виде произведения параметра c и среднего квадратического отклонения случайной величины. По результатам анализа асимптотических свойств исследуемой непараметрической оценки плотности вероятности оптимальное значение параметра c^* зависит от коэффициента корреляции rмежду зависимыми случайными величинами и объёма n исходных статистических данных. При фиксированных значениях r с ростом среднего квадратического отклонения σ_2 функции y наблюдается рост значений c^* . С увеличением r и n значения c^* уменьшаются. При малых значениях r и относительно больших погрешностях их оценивания аппроксимационные свойства рассматриваемой непараметрической оценки плотности вероятности изменяются незначительно. С увеличением r аппроксимационные свойства $\bar{p}(x, y)$ снижаются, что особенно характерно для больших погрешностей оценивания r.

Полученные результаты являются основой развития быстрых процедур оптимизации непараметрической регрессии.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лапко А. В., Лапко В. А., Бахтина А. В. Применение непараметрического алгоритма распознавания образов в задаче проверки гипотезы о независимости переменных неоднозначных функций // Измерительная техника. 2022. № 1. С. 17–22. DOI: 10.32446/0368-1025it.2022-01-17-22.
- 2. Лапко А. В., Лапко В. А., Бахтина А. В. Исследование методики проверки гипотезы о независимости двухмерных случайных величин с использованием непараметрического классификатора // Автометрия. 2021. 57, № 6. С. 90–100. DOI: 10.15372/AUT20210610.
- 3. Зеньков И. В., Лапко А. В., Лапко В. А. и др. Методика последовательного формирования набора компонент многомерной случайной величины с использованием непараметрического алгоритма распознавания образов // Компьютерная оптика. 2021. 45, № 6. С. 926–933. DOI: 10.18287/2412-6179-CO-902.
- Rudemo M. Empirical choice of histogram and kernel density estimators // Scandinav. Journ. Statist. 1982. 9. P. 65–78.
- Bowman A. W. A comparative study of some kernel-based non-parametric density estimators // Journ. Statist. Comput. Simulation. 1985. 21, N 3–4. P. 313–327. DOI: 10.1080/00949658508810822.

Таблица 2

- Hall P. Large-sample optimality of least squares cross-validation in density estimation // Ann. Statist. 1983. 11, N 4. P. 1156–1174. DOI: 10.1214/aos/1176346329.
- Jiang M., Provost S. B. A hybrid bandwidth selection methodology for kernel density estimation // Journ. Statist. Comput. and Simulation. 2014. 84, N 3. P. 614–627. DOI: 10.1080/00949655.2012.721366.
- 8. Dutta S. Cross-validation revisited // Communications in Statistics Simulation and Computation. 2016. 45, N 2. P. 472–490. DOI: 10.1080/03610918.2013.862275.
- Silverman B. W. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall, 1986. 175 p.
- Sheather S., Jones M. A reliable data-based bandwidth selection method for kernel density estimation // Journ. Royal Statist. Soc. Ser. B. 1991. 53, N 3. P. 683–690. DOI: 10.1111/j.2517-6161.1991.tb01857.x.
- Sheather S. J. Density estimation // Statist. Sci. 2004. 19, N 4. P. 588–597. DOI: 10.1214/088342304000000297.
- 12. Scott D. W. Multivariate Density Estimation: Theory, Practice, and Visualization. New Jersey: John Wiley & Sons, 2015. 384 p.
- 13. Лапко А. В., Лапко В. А. Быстрый выбор коэффициентов размытости ядерной оценки плотности вероятности независимых случайных величин // Автометрия. 2022. 58, № 1. С. 33–39. DOI: 10.15372/AUT20220104.
- 14. **Лапко А. В., Лапко В. А., Бахтина А. В.** Оптимизация ядерной оценки плотности вероятности двухмерной случайной величины с независимыми составляющими // Измерительная техника. 2021. № 12. С. 17–21. DOI: 10.32446/0368-1025it.2021-12-17-21.
- 15. **Лапко А. В., Лапко В. А.** Нетрадиционная методика выбора коэффициентов размытости ядерных функций в непараметрической регрессии // Измерительная техника. 2022. № 2. С. 3–7. DOI: 10.32446/0368-1025it.2022-2-3-7.
- 16. Епанечников В. А. Непараметрическая оценка многомерной плотности вероятности // Теория вероятности и её применения. 1969. **14**, № 1. С. 156–161.
- Parzen E. On estimation of a probability density function and mode // Ann. Math. Statist. 1962. 33, N 3. P. 1065–1076.
- 18. Пугачёв В. С. Теория вероятностей и математическая статистика: уч. пособие. М.: Физматлит, 2002. 496 с.

Поступила в редакцию 12.05.2022 После доработки 14.06.2022 Принята к публикации 24.06.2022