УДК 538.911

МОЛЕКУЛЯРНО-ЛУЧЕВАЯ ЭПИТАКСИЯ ГЕРМАНИЯ НА Si(001) ДЛЯ ФОТОДЕТЕКТОРОВ СПЕКТРАЛЬНОГО ДИАПАЗОНА 1,31–1,55 МКМ

© К. Б. Фрицлер¹, А. С. Дерябин¹, И. Д. Лошкарев¹, А. И. Никифоров¹, И. Б. Чистохин¹, А. В. Колесников¹, А. П. Василенко¹, О. П. Пчеляков¹, Л. В. Соколов¹, К. Э. Певчих², В. В. Светиков², А. К. Гутаковский¹

¹Институт физики полупроводников им. А. В. Ржанова СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 13 ²Акционерное общество «Зеленоградский нанотехнологический центр», 124527, Москва, Зеленоград, Солнечная аллея, 6 *E-mail: kbf@isp.nsc.ru*

Методом молекулярно-лучевой эпитаксии сформированы фоточувствительные слои германия на кремниевой подложке. Исследованы структурные, оптические и фотоэлектрические характеристики плёнок. Полученные данные подтверждают возможность использования изготовленных гетероструктур Ge на Si для создания фотодетекторов спектрального диапазона 1,3–1,55 мкм.

Ключевые слова: молекулярно-лучевая эпитаксия, фотодетекторы, эпитаксиальные слои Ge на Si, пронизывающие дислокации.

DOI: 10.15372/AUT20240402 EDN: FUBAEQ

Введение. Быстрое развитие телекоммуникационных линий связи и систем высокопроизводительных вычислений привело к необходимости совершенствования элементной базы кремниевых фотонных платформ. Одним из ключевых компонентов, определяющим функциональность и производительность устройств на основе кремниевых фотонных интегральных схем (ФИС), является фотодетектор (ФД). Для использования в ФИС требуются ФД, эффективно работающие в телекоммуникационном спектральном диапазоне 1,3–1,55 мкм. Для применения в этой области спектра ФД на основе слоёв Ge на Si являются перспективными [1, 2] из-за прямой зоны 0,8 эВ и коэффициента поглощения германия, на длинах волн 1,31 и 1,55 мкм имеющего значения 7,5 \cdot 10³ см⁻¹ и 3,5 \cdot 10² см⁻¹ соответственно. Кроме того, Ge можно относительно легко интегрировать в технологическую линию КМОП.

Серьёзным препятствием на пути создания эффективных фотодетекторов на основе структур Ge/Si является существенное несоответствие параметров решётки между кремнием и германием, составляющее 4,2 %. Слои Ge, выращенные на кремниевой подложке, характеризуются высокой плотностью пронизывающих дислокаций (ПД), что существенно ухудшает рабочие параметры ФД и приводит к увеличению темнового тока [3, 4]. Дополнительной проблемой является тенденция к островковому режиму роста, которая также увеличивает дефектность плёнки [5]. Получение качественных эпитаксиальных слоёв Ge на Si — одна из ключевых задач в технологии германиевых фотодетекторов. В настоящее время для её решения чаще всего применяется метод газофазной эпитаксии, для которой была разработана двухэтапная технология роста Ge [3–5]. На первом этапе после тщательной очистки подложка выдерживается при низкой температуре (~300–400 °C) и формируется тонкий слой Ge (~50–100 нм). Затем на втором этапе температура подложки повышается до ~550–700 °C и выращивается слой германия большой толщины. Полученные методом двухэтапной эпитаксии структуры обычно имеют высокую плотность пронизывающих дислокаций (10^8-10^9 см⁻²). Высокотемпературный циклический отжиг позволяет снизить данный параметр до уровня менее 10^8 см⁻². Продемонстрированы улучшенные характеристики фотоприёмников Ge, изготовленных на основе этого метода [6, 7].

Одним из подходов для подавления островкового роста является применение полностью релаксированного буферного градиентного слоя твёрдого раствора Si_{1-x}Ge_x, позволяющего приблизиться от параметра решётки Si к параметру решётки Ge. Поскольку поверхностная энергия Si_{1-x}Ge_x ниже, чем у кремния, а несоответствие между твёрдым раствором и германием меньше, чем между Si и Ge, введение градиентного буфера приводит к росту последующих слоёв в послойном режиме роста Франка — ван дер Мерве. Этот подход был впервые применён Лурье и др. [8], а затем усовершенствован Фицджеральдом и др. [9]. Сформированные плёнки Ge продемонстрировали низкую плотность пронизывающих дислокаций $3 \cdot 10^6$ см⁻² для x = 0,50. Недостатком данного метода является необходимость перед эпитаксией Ge выращивать толстый (до 10 мкм) слой градиентного твёрдого раствора, получение которого довольно длительно, требует повышенного расхода материала и сложно реализуемо технологически. Это обусловило необходимость развития технологии роста Ge с использованием тонких переходных слоёв Si_{1-x}Ge_x.

Для решения этой задачи перспективным представляется применение метода молекулярно-лучевой эпитаксии. Прецизионное управление молекулярными потоками, формирующими слои на подложке, контроль качества плёнок *in situ* с использованием метода дифракции быстрых электронов, широкий диапазон температур роста позволяют получать сверхтонкие слои GeSi высокого качества и обеспечивают резкие гетерограницы. Для молекулярно-лучевой эпитаксии, как и для газофазного метода, реализован двухстадийный метод выращивания Ge [10–12].

Целью представленной работы является разработка технологии изготовления высококачественных фоточувствительных слоёв Ge на Si за счёт нанесения тонкого релаксированного слоя $Si_{1-x}Ge_x$ и последующего двухстадийного роста Ge.

Эксперимент. Рост структур Ge на Si осуществлялся в сверхвысоковакуумной установке молекулярно-лучевой эпитаксии «Катунь». Исходный вакуум перед ростом составлял ~ 1 · 10⁻⁸ Па. Эпитаксия Ge проводилась на подложках Si с ориентацией поверхности (001). Молекулярный пучок Ge формировался источником с тиглем из пиролитического нитрида бора. При очистке поверхности подложки и выращивании буферного слоя Si использовался электронно-лучевой испаритель.

Структурное состояние эпитаксиальных слоёв Ge оценивалось с помощью селективного травления, рентгеновской дифрактометрии и электронной микроскопии. Селективное химическое травление осуществлялось с использованием состава CrO_3 : HF : $H_2O =$ = 5:40:80. Анализ морфологии поверхности и подсчёт количества ямок травления, по которым оценивалась плотность ПД, проводились с помощью атомно-силового микроскопа (ACM) Solver P47 (NT-MDT). Рентгеноструктурные исследования выполнены на трёхосевом рентгеновском дифрактометре ДСО-1T с применением кристалла-монохроматора Ge(004) в излучении $Cu_{K\alpha 1}$ ($\lambda = 1,54056$ Å). Просвечивающая электронная микроскопия (ПЭМ) поперечных срезов проводилась с помощью электронного микроскопа Titan.

Измерения спектров пропускания и отражения осуществлялись в вакуумном фурьеспектрометре Bruker VERTEX 80v с автоматизированной приставкой для измерения пропускания и отражения A510/Q-T. В качестве источника излучения ближнего ИК-диапазона в работе использовались вольфрамовая лампа накаливания и светоделитель из фторида кальция. Спектры фотоотклика измерялись в диапазоне длин волн 1200–1700 нм при комнатной температуре с помощью полуавтоматизированной установки на базе дифракционного светосильного монохроматора МДР-41, управляемого компьютером. В качестве источника оптического излучения использовалась галогенная лампа. Измерение фотосигнала осуществлялось на частоте 67 Гц с использованием усилителя с синхронным детектированием Princeton Applied Research 5210. Омические контакты создавались нанесением индия на планарную поверхность краёв подготовленных образцов размером $3 \times 8 \text{ мм}^2$. На исследуемые образцы подавалось постоянное напряжение 2–3 В.

Результаты и обсуждение. Для получения эпитаксиальных слоёв германия на Si с минимальной плотностью пронизывающих дислокаций применялась модифицированная двухстадийная схема роста с использованием слоя твёрдого раствора $Si_{1-x}Ge_x$. После получения атомарно-чистой поверхности подложки и формирования буферных слоёв Si в соответствии с ранее использованной методикой [13] наносился слой Si_{1-x}Ge_x толщиной 150 нм с параметром $x \sim 0.25$. Далее реализовывалась двухстадийная схема получения Ge. На первом этапе выращивался низкотемпературный слой германия толщиной 100 нм при температуре подложки 300 °C, который обеспечивает сплошное покрытие подложки кремния, позволяя избежать разрыва на островки. На второй стадии температура подложки повышалась до 550-600 °C и осуществлялся рост германия до толщины 1 мкм. На этом этапе происходит основной процесс пластической релаксации механических напряжений несоответствия, в результате которого слой Ge становится практически ненапряжённым, но при этом имеет высокую плотность пронизывающих дислокаций. Для уменьшения плотности ПД по окончании роста гетероструктура подвергалась процедуре циклического отжига в вакуумной камере ростовой установки. Осуществлялось пять циклов нагрева гетероструктуры от 725 до 850 °C с последующим охлаждением до 725 °C и выдержкой на каждой температуре 5 мин. Данная процедура облегчает процесс аннигиляции дислокаций и уменьшает их плотность.

По данным селективного травления, средняя плотность ПД на образцах, не подвергавшихся циклическому отжигу, составила ~ 10^9 см⁻². Применение термообработки позволило уменьшить плотность пронизывающих дислокаций в плёнках Ge до значений (3–7) · 10^7 см⁻². На рис. 1 приведено типичное ACM-изображение поверхности плёнки Ge после циклического отжига и селективного травления. Плотность ямок травления, соответствующая плотности ПД, составляет 7 · 10^7 см⁻².

Эти результаты подтверждаются изображениями поперечных срезов эпитаксиальной структуры, полученными на ПЭМ. Как видно из рис. 2, контраст, связанный с изображением пронизывающих сегментов дислокаций, в слое Ge отсутствует. С учётом того, что толщина фольги, приготовленной из образца, составляет ~0,3 мкм, латеральный размер поля изображения достигает ~3,5 мкм, плотность пронизывающих дислокаций в плёнке — менее $1 \cdot 10^8$ см⁻².

Анализ полученных с использованием рентгеновской дифракции данных позволил определить состав слоя $\mathrm{Si}_{1-x}\mathrm{Ge}_x$, для которого параметр x составляет 0,25, и степень релаксации напряжений несоответствия, достигающую 80 %. На рис. 3 представлена карта распределения интенсивности в обратном пространстве вокруг узла Ge(115) для полученной гетеросистемы после проведения циклического отжига. Через узел подложки Si (не виден на рис. 3 в данном масштабе) проведена наклонная линия Rel, соединяющая его с нулевым узлом (началом координат). На этой линии полной релаксации находятся узлы от ненапряжённых слоёв. Отчётливо видно, что слой Ge полностью релаксирован, так как лежит на линии полной релаксации.

В [14] показано отличие узлов обратной решётки плёнки для двух предельных случаев: сеток 60- и 90-градусных дислокаций несоответствия (ДН). Последним соответствует меньший уровень ориентационных искажений, они эффективнее снимают несоответствие,

Puc. 1. АСМ-изображение поверхности эпитаксиального слоя Ge после структурно-чувствительного травления

Рис. 2. ПЭМ-изображение поперечного среза плёнки Ge после циклического отжига

Рис. 3. Карта обратного пространства вблизи узла (-1-1 5) плёнки Ge. Рентгеновская дифрактометрия

но являются «сидячими» [15]. На карте рис. З наклонной прямой показана линия ориентаций Ог для рефлекса (115), вдоль которой распределяется интенсивность узлов от слоёв с одинаковыми параметром и дисперсией ориентаций. Форма узла обратной решётки на рис. З для полученной нами структуры качественно соответствует системам с большими ориентационными искажениями в плёнке, характерными для сетки 60-градусных дислокаций несоответствия [14]. Несмотря на более высокий уровень вносимых искажений, 60-градусные ДН являются более предпочтительными с точки зрения аннигиляции пронизывающих участков дислокаций, чем 90-градусные ДН. Управление процессом формирования дислокационной структуры в двухстадийной схеме получения плёнок Ge является перспективным для уменьшения плотности ПД [16].

Для оценки оптических свойств полученного фоточувствительного слоя Ge были про-

Puc. 4. Спектры пропускания образцов германия на кремнии (T), отражения (R) и производная от пропускания (D)

 $Puc. \ 5. \ \mbox{Спектральная зависимость фотоотклика образцов Ge на Si, измеренная при<math display="inline">T=296 \ \mbox{K}$ и $U=2 \ \mbox{B}$

ведены измерения оптического пропускания и отражения, а также спектральной зависимости фотоотклика. На рис. 4 приведены спектры пропускания и отражения изготовленных образцов, в которых при энергиях в диапазоне 0,3–0,7 эВ наблюдаются максимумы и минимумы, связанные с интерференцией в плёнке германия. Производная от спектра пропускания позволяет определить энергию края поглощения со значением 0,79 эВ, что соответствует прямому оптическому переходу $E_{\Gamma 1} = 0,8$ эВ, рассчитанному методом псевдопотенциала [17].

На рис. 5 представлена спектральная зависимость фотоотклика полученного слоя германия. Оценка длинноволновой границы по полувысоте даёт энергию, равную 0,77 эВ, что близко к значению, полученному из оптических измерений спектра пропускания. Следует заметить, что непрямой оптический переход с энергией 0,66 эВ не наблюдается. Таким образом, спектральная зависимость фотоотклика эпитаксиального слоя Ge на Si указывает на чувствительность в требуемом спектральном диапазоне.

Заключение. Методом молекулярно-лучевой эпитаксии сформированы фоточувствительные слои германия на Si(001) для фотодетекторов спектрального диапазона 1,31–1,55 мкм. Использование модификации двухстадийной схемы роста Ge со слоем релаксированного твёрдого раствора Si_{1-x}Ge_x в сочетании с циклическим отжигом является перспективным для получения малодефектных слоёв Ge на кремниевой подложке. Плотность пронизывающих дислокаций в полученных структурах снижена до уровня менее $3 \cdot 10^7$ см⁻². Спектральная зависимость фотоотклика сформированных эпитаксиальных слоёв германия определяет чувствительность в диапазоне 1,31–1,55 мкм.

СПИСОК ЛИТЕРАТУРЫ

- Benedikovic D., Virot L., Aubin G. et al. Silicon-germanium receivers for short-wave-infrared optoelectronics and communications // Nanophotonics. 2020. 10, Iss. 3. P. 1059–1079.
- Piels M., Bowers J. E. Photodetectors for silicon photonic integrated circuits // Photodetectors: Materials, Devices and Applications / Ed. B. Nabet. 2nd Ed. Woodhead Publishing: Elsevier Ltd., 2023. P. 419–436.

- Son B., Lin Y., Lee K. H. et al. Dark current analysis of germanium-on-insulator vertical *p-i-n* photodetectors with varying threading dislocation density // Journ. Appl. Phys. 2020. 127, Iss. 20. 203105. DOI: 10.1063/5.0005112.
- DiLello N. A., Johnstone D. K., Hoyt J. L. Characterization of dark current in Ge-on-Si photodiodes // Journ. Appl. Phys. 2012. 112, Iss. 5. 054506. DOI: 10.1063/1.4749259.
- Michel J., Liu J., Kimerling L. C. High-performance Ge-on-Si photodetectors // Nat. Photon. 2010. 4, Iss. 8. P. 527–534.
- Famà S., Colace L., Masini G. et al. High performance germanium-on-silicon detectors for optical communications // Appl. Phys. Lett. 2010. 81, Iss. 4. P. 586–588.
- Luan H.-C., Lim D. R., Lee K. K. et al. High-quality Ge epilayers on Si with low threadingdislocation densities // Appl. Phys. Lett. 1999. 75, Iss. 19. P. 2909–2911.
- Luryi S., Kastalsky A., Bean J. C. New infrared detector on a silicon chip // IEEE Trans. Electron Devices. 1984. 31, Iss. 9. P. 1135–1139.
- 9. Fitzgerald E. A., Xie Y. H., Green M. L. et al. Totally relaxed Ge_xSi_{1-x} layers with low threading dislocation densities grown on Si substrates // Appl. Phys. Lett. 1991. 59, Iss. 7. P. 811–813.
- Oehme M., Werner J., Kaschel M. et al. Germanium waveguide photodetectors integrated on silicon with MBE // Thin Solid Films. 2008. 517, Iss. 1. P. 137–139.
- 11. Юрасов Д. В., Бобров А. И., Данильцев В. М. и др. Влияние условий роста и отжига на параметры релаксированных слоев Ge/Si(001), полученных методом молекулярнопучковой эпитаксии // Физика и техника полупроводников. 2015. 49, № 11. С. 1463–1468.
- Jutzi M., Berroth M., Wohl G. et al. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth // IEEE Photon. Technol. Lett. 2005. 17, Iss. 7. P. 1510–1512.
- 13. Bolkhovityanov Yu. B., Deryabin A. S., Gutakovskii A. K. et al. Heterostructures $Ge_xSi_{1-x}/Si(001)$ (x = 0.18 0.62) grown by molecular beam epitaxy at a low (350 °C) temperature: Specific features of plastic relaxation // Thin Solid Films. 2004. 466, Iss. 1–2. P. 69–74.
- Kaganer V. M., Köhler R., Schmidbauer M. et al. X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures // Phys. Rev. B. 1997. 55, Iss. 3. P. 1793–1810.
- Bolkhovityanov Yu. B., Sokolov L. V. Ge-on-Si films obtained by epitaxial growing: Edge dislocations and their participation in plastic relaxation // Semiconductor Sci. and Technol. 2012. 27, N 4. 043001. DOI: 10.1088/0268-1242/27/4/043001.
- 16. Дерябин А. С., Долбак А. Е., Есин М. Ю. и др. Молекулярно-лучевая эпитаксия напряжённых наногетероструктур на основе Si, Ge, Sn // Автометрия. 2020. 56, № 5. С. 27–34. DOI: 10.15372/AUT20200503.
- 17. Питер Ю., Кардона М. Основы физики полупроводников: Пер. с англ. И. И. Решиной / Под ред. Б. П. Захарчени. М.: Физматлит, 2002. 560 с.

Поступила в редакцию 31.05.2024 После доработки 31.05.2024 Принята к публикации 04.06.2024