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Введение. Классические системы обнаружения, пеленгации и сопровождения целе-
вых объектов, траектории и пространственные координаты которых подлежат расчёту,
классифицируют, как правило, по двум категориям. Первая основана на активной лока-
ции, когда азимутальное направление и дальность разыскиваемого объекта оцениваются
по отражённому от него сигналу. Этот метод является основным инструментом, использу-
емым, например, в современных радиолокационных системах [1, 2]. Второй метод локации
базируется на приёме сигнала, генерируемого самим разыскиваемым объектом. Наиболее
характерной областью, в которой применяются такого рода пассивные поисковые систе-
мы, является гидроакустика [3, 4]. В представленной работе рассматриваются проблемы,
связанные с построением конструктивных алгоритмов скоростного оценивания координат

малоразмерных сигнальных источников, обнаруживающих себя генерацией в случайные
моменты времени сверхкоротких (мгновенных) импульсов. Подобного рода задачи не укла-
дываются в стандартные схемы обнаружения и уточнения координат целевых объектов и

требуют разработки своих специфических методов исследования. Необходимость построе-
ния алгоритмов локализации сигнальных источников со случайной дисциплиной генерации

импульсов возникает, в частности, в астрофизике при поиске барстеров — непериодически

вспыхивающих космических источников рентгеновского излучения [5]. Похожие по мате-
матической постановке задачи появляются при отслеживании траекторий малоразмерных

и слабоконтрастных объектов на видеопоследовательностях, регистрируемых в процессе
дистанционного зондирования земной поверхности [6, 7], а также в дефектоскопии при
поиске неисправностей, проявляющихся в виде перемежающихся отказов [8, 9]. При ап-
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проксимации и фильтрации зашумлённых изображений малоразмерных подвижных объ-
ектов такие задачи могут возникнуть в тех случаях, когда разыскиваемый объект являет-
ся источником помех, а уточнение его координат необходимо для корректного проведения
процедуры шумоподавления [10, 11]. Построение оптимальной стратегии поиска сигналь-
ных источников со случайной дисциплиной генерации импульсов в большинстве случаев

требует решения сложных вариационных задач из области оптимального управления и

динамического программирования [12, 13]. Так, рассматриваемая в данной работе зада-
ча приводит к многомерной системе нелинейных уравнений, численное решение которой
затруднено даже при использовании самых передовых вычислительных технологий. Пре-
имущество предлагаемого подхода заключается в том, что с его помощью удалось устано-
вить и учесть особенности формирования возникающей многомерной системы уравнений,
позволившие найти её точное решение. Метод возвратной рекурсии сделал прозрачным и
скоростным процесс расчёта параметров оптимального поиска. Методика построения оп-
тимальных возвратно-рекурсивных алгоритмов, которые минимизируют математическое
ожидание времени поиска и обеспечивают заданную точность локализации сигнальных

импульсных источников, была полностью формализована и реализована в виде автоном-
ного программного блока.

1. Постановка задачи. В решаемой ниже задаче (рис. 1) разыскивается малоразмер-
ный импульсный источник, расположенный в пределах поискового интервала (0, L). Из-
вестна его априорная плотность вероятности, которая задаётся кусочно-постоянной функ-
цией H(1)(x). Кусочно-постоянное представление выбрано потому, что с помощью аппрок-
симации нулевого порядка можно приблизить произвольную непрерывную на отрезке [0, L]
функцию (т. е. любую функцию класса C[0, L]) с любой заранее заданной точностью. В
целом, будет рассматриваться одномерная задача, но её решение при необходимости легко
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Рис. 1. Априорная функция плотности вероятности разыскиваемого источника H(1)(x)
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обобщается на двумерный случай. Предполагается, что сигнальный источник достаточно
мал, чтобы в рамках решаемой задачи можно было пренебречь его физическими размера-
ми и считать его математической точкой. Разыскиваемый источник в случайные моменты
времени генерирует сверхкороткие (мгновенные) импульсы с пуассоновской интенсивно-
стью λ. Это означает, что паузы между импульсами имеют показательное распределение
pause (t) = λ exp (−λt). Локализация сигнального источника ведётся с помощью детек-
торного устройства, окно обзора которого может произвольно меняться в течение всего
периода поиска. Импульс регистрируется тогда и только тогда, когда в момент генера-
ции он находится в окне обзора детектора. При регистрации импульса сканирующее окно
сужается, и дальнейший поиск продолжается внутри детекторного окна с зафиксирован-
ным импульсом до достижения требуемой точности локализации. Задача заключается в
построении поисковой процедуры, имеющей минимальное (в статистическом плане) вре-
мя локализации импульсного источника с точностью ε. Под статистически минимальным
временем понимается математическое ожидание времени локализации источника, усред-
нённое по ансамблю реализаций. Требуемая точность считается обеспеченной, если в ре-
зультате поиска указывается подынтервал ∆ε ⊂ (0, L), имеющий длину 0 < ε < L и

достоверно содержащий разыскиваемый источник.

2. Общий план решения. При построении оптимального алгоритма, минимизиру-
ющего (с заданной точностью) математическое ожидание времени локализации разыски-
ваемого источника, требуется выполнить несколько обязательных условий. Первое: оп-
тимальный поисковый алгоритм всегда должен начинаться с наблюдения детекторным

устройством того из фрагментов поискового интервала, который имеет наивысшую плот-
ность вероятности. Второе условие относится к ситуации, когда при длительном отсут-
ствии зафиксированных импульсов требуется осуществить переход к следующему этапу:
в этом случае переход должен производиться в тот момент, когда падающая плотность на
текущем сканируемом участке сравнивается с плотностью того из не наблюдавшихся ра-
нее подынтервалов, который имел самую высокую плотность. При этом на каждом после-
дующем этапе сканируется расширенный фрагмент (это расширение происходит за счёт
добавления к нему не наблюдавшегося ранее подынтервала с самой высокой амплитудой).
Третье: в момент, когда на одном из начальных поисковых этапов фиксируется сигнальный
импульс, происходит переход к заключительной стадии поиска, которая представляет со-
бой многоэтапную процедуру оптимальной локализации (с требуемой в задаче точностью)
импульсного источника, имеющего равномерное распределение внутри детекторного окна,
в котором зафиксирован импульс. Такая задача рассматривалась нами ранее, её решение
можно найти в [9]. Аналогичный переход к процедуре оптимальной локализации равно-
мерно распределённого точечно-импульсного источника должен произойти и в том случае,
когда ни на одном из начальных поисковых этапов не удалось зафиксировать ни одного

импульса. В этом случае исходная функция плотности вероятности H(1)(x) (здесь и да-
лее верхний индекс в круглых скобках всегда указывает на привязку параметра к номеру

этапа поискового алгоритма) выравнивается на всём интервале (0, L), в результате че-
го заключительная оптимальная процедура поиска должна вестись уже в пределах всего

поискового интервала до достижения требуемой точности локализации.
Таким образом, в вычислительном отношении для построения оптимального алгорит-

ма локализации необходимо для каждого поискового этапа рассчитать его оптимальную

предельно допустимую продолжительность и оптимальный размер сканирующего окна

детектора. При этом совокупное применение полного набора рассчитанных оптимальных
параметров должно обеспечить минимизацию математического ожидания общего време-
ни локализации разыскиваемого источника. Для решения этой задачи нами предложено
использовать механизм возвратной рекурсии. Идея такого подхода возникла потому, что
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применительно к данной задаче рекурсивный алгоритм перерасчёта общего времени лока-
лизации более эффективен и прозрачен, если его проводить не с привязкой к хронологии
выполнения поисковых этапов, а совершать вычисления в обратном порядке.

3. Схема возвратной рекурсии. Производя стандартную нормировку на длину по-
искового интервала L и заменяя величину ε величиной ε/L, можно исключить параметр
L из дальнейшего рассмотрения и считать, что L = 1 и 0 < ε < 1. В используемом на-
ми представлении многоступенчатая кусочно-постоянная функция H(1)(x), описывающая
исходную априорную плотность распределения вероятностей разыскиваемого источника,
такова, что все подынтервалы di, (i = 1, . . . , N) и соответствующие им амплитудные зна-

чения h
(1)
1 , (i = 1, . . . , N) упорядочены по убыванию плотности: h

(1)
1 > h

(1)
2 > . . . > h

(1)
N > 0.

Для удобства дальнейшего изложения предполагается, что исходная функция плотности
H(1)(x) не имеет внутри интервала (0, 1) ни одного локального минимума. При несоблю-
дении этого условия оптимальный алгоритм локализации остаётся прежним, но на ряде
этапов подлежащий сканированию фрагмент поискового интервала может оказаться мно-
госвязным.

Общая схема возвратной рекурсии в нашем случае такова. Обозначим через

ET recurs (i + 1) математическое ожидание остаточного времени, которое требуется оп-
тимальному поисковому алгоритму для завершения поиска и достижения требуемой точ-
ности локализации ε в том случае, когда при исполнении i начальных поисковых этапов
не зафиксировано ни одного импульса. Тогда на очередном шаге рекурсии расчёт опти-
мального времени ET recurs (i) может быть выполнен с применением «возвратного» соот-
ношения:

ET recurs (i) = Q
(i)
1 bt max

(i)
opt + ET recurs (i+ 1)c+

+Q
(i)
2 bt short(i) + ET uniform (ε/l

(i)
opt)c. (1)

Параметры, которые необходимо рассчитать для проведения возвратной рекурсии (1), та-

ковы: Q
(i)
1 — вероятность того, что на i-м поисковом этапе не будет зафиксировано ни

одного импульса; Q
(i)
2 = 1 − Q

(i)
1 — вероятность того, что на i-м поисковом этапе бу-

дет зафиксирован как минимум один импульс; t max
(i)
opt — оптимальное значение макси-

мально допустимой продолжительности i-го поискового этапа; t short(i) — математиче-
ское ожидание интервала времени от начала i-го этапа до регистрации первого импульса;

l
(i)
opt — оптимальный размер окна детектора на i-м поисковом этапе; ET uniform (ε/l

(i)
opt) —

математическое ожидание времени исполнения заключительной многоэтапной процеду-
ры локализации равномерно распределённого источника (в том случае, если на i-м этапе
фиксируется импульс). Циклически повторяя рекурсию (1), т. е. рассчитывая последова-
тельно величины ET recurs (N), ET recurs (N − 1) и т. д., мы в итоге получим величину
ET recurs (1), соответствующую математическому ожиданию времени исполнения опти-
мального алгоритма (т. е. алгоритма, который минимизирует усреднённое по ансамблю
реализаций суммарное время поиска для исходно поставленной задачи). При этом на каж-

дом шаге рекурсии для нахождения текущих значений l
(i)
opt и t max

(i)
opt, определяющих оп-

тимальные размер детекторного окна и значение максимально допустимой продолжитель-
ности i-го поискового этапа, будет решаться своя вариационная задача. Для инициации
процедуры возвратной рекурсии берётся выражение ET recurs (N), соответствующее ма-
тематическому ожиданию времени исполнения последнего N -го этапа. Заметим, что N -й
этап наступает только тогда, когда ни на одном из начальных (N − 1) этапов не зафик-
сировано ни одного импульса, вследствие чего амплитудные значения исходной функции
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Рис. 2. Трансформированная к началу i-го этапа функция плотности вероят-
ности H(i)(x)

плотности вероятности H(1)(x) выравнялись во всём поисковом интервале. Решение воз-
никающей при этом задачи построения оптимального алгоритма локализации равномерно

распределённого точечно-импульсного источника найдено в [14].

4. Расчёт вспомогательных параметров для построения оптимального ал-
горитма локализации.

4.1. Расчёт трансформированной функции плотности вероятностей H(i)(x) для
каждого поискового этапа. В оптимальной поисковой процедуре (рис. 2) к началу каждо-
го нового i-го этапа (т. е. к моменту, когда при отсутствии зафиксированных импульсов
истекло максимально допустимое время исполнения предыдущего (i−1)-го этапа) должны
сравняться плотности вероятностей во всём объединённом фрагменте (d1+. . .+di). Второе
обстоятельство, на которое необходимо обратить внимание, заключается в том, что все

плотности вероятностей h
(i)
i , . . . , h

(i)
N , являющиеся амплитудными значениями трансфор-

мированной функции H(i)(x) в подынтервалах dj , (j = i, . . . , N), имеют (по отношению к

исходной плотности H(1)(x)) один и тот же коэффициент роста K(i). Это происходит пото-
му, что все не наблюдавшиеся ранее фрагменты синхронно и в равной степени подрастали
на каждом из (i−1) предыдущих этапов. Учитывая это, можно рассчитать изменившуюся
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к началу i-го этапа функцию плотности H(i)(x):

H(i)(x) =

 h
(1)
i K(i), x ∈ dj , j = 1, . . . , i;

h
(1)
j K(i), x ∈ dj , j = (i+ 1), . . . , N.

(2)

Поскольку каждая из функций H(i)(x), i = 1, . . . , (N − 1), представляет собой плотность

вероятностей, нетрудно вычислить коэффициенты ростаK(i), знание которых понадобится
в дальнейшем:

K(i) =
1

h
(1)
i (d1 + . . .+ di) +

∑j=N

j=i+1
h
(1)
j dj

=

=
1

h
(1)
i (d1 + . . .+ di) + (P

(1)
i+1 + . . .+ P

(1)
N )

. (3)

Поскольку на i-м этапе поиск будет проводиться в пределах объединённого фрагмента (d1+

+ . . . + di), нам потребуется знание вероятности Pr
(i)
1 того, что на этом участке присут-

ствует разыскиваемый источник:

Pr
(i)
1 = h

(1)
i K(i)(d1 + . . .+ di). (4)

Вероятность того, что источник находится вне наблюдаемого на i-м этапе фрагмента (d1+
+ . . .+ di), равна соответственно

Pr
(i)
2 = 1− Pr

(i)
1 . (5)

4.2. Расчёт величин t max (i) — максимально допустимых продолжительностей
каждого из поисковых этапов оптимального алгоритма локализации. Проведём снача-
ла процедуру расчёта максимально допустимого времени t max(1), в течение которого на
первом этапе может (при отсутствии регистрируемых импульсов) сканироваться фраг-

мент d1, соответствующий самой высокой амплитуде h
(1)
1 . В принципе, если на первом

этапе весь участок d1 наблюдать целиком (т. е. если размер детекторного окна l(1) совпада-
ет с d1), то вероятность не зарегистрировать за время t ни одного импульса складывается
из вероятностей двух непересекающихся событий и равна

P (t) = (1− P (1)
1 ) + P

(1)
1 exp (−λt). (6)

Здесь первое слагаемое (1−P (1)
1 ) соответствует вероятности того, что сигнальный источ-

ник расположен вне подынтервала d1, а второе слагаемое — вероятности того, что разыс-
киваемый источник, находясь в подынтервале d1, не сгенерировал за время t ни одного
импульса. Если же подынтервал d1 равномерно сканировать детекторным окном l

(1) < d1,
то вероятность не зарегистрировать за время t max(1) ни одного импульса станет равной

P (t) = (1− P (1)
1 ) + P

(1)
1 exp (−λ̂t max(1)), где λ̂ = λ

l(1)

d1
. (7)
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Поэтому при отсутствии зафиксированных импульсов в течение времени t max(1) исход-

ная априорная вероятность P
(1)
1 = P

(1)
1 (0) того, что импульсный источник расположен в

пределах участка d1, понижается до величины

P
(1)
1 (t max(1)) =

P
(1)
1 exp (−λ̂t max(1))

(1− P (1)
1 ) + P

(1)
1 exp (−λ̂t max(1))

=

=

P
(1)
1 exp

(
−λ l

(1)

d1
t max(1)

)
(1− P (1)

1 ) + P
(1)
1 exp

(
−λ l

(1)

d1
t max(1)

) . (8)

Следовательно, значение изменившейся к этому моменту времени амплитуды h
(1)
1 составит

h
(1)
1 (t max(1)) =

P
(1)
1 (t max(1))

d1
=

h
(1)
1 exp

(
−λ l

(1)

d1
t max(1)

)
(1− P (1)

1 ) + P
(1)
1 exp

(
−λ l

(1)

d1
t max(1)

) . (9)

Окончание первого этапа наступит тогда, когда падающая при отсутствии импульсов

плотность вероятности h
(1)
1 (t max(1)) в подынтервале d1 cравняется с возросшей к этому

моменту плотностью h
(1)
2 (t max(1)) в подынтервале d2. На рис. 2 схематично показано,

как при этом трансформируется функция H(1)(x). Сделаем ещё два дополнения, которые
понадобятся нам в дальнейшем. Во-первых, на момент окончания первого этапа (т. е.

на момент времени t max(1)) коэффициент k(1) = h
(1)
1 (t max(1))/h

(1)
1 , соответствующий

понижению плотности вероятности h
(1)
1 в первом подынтервале d1, всегда совпадает с

коэффициентом понижения самой вероятности P
(1)
1 (с P

(1)
1 (0) до P

(1)
1 (t max(1))), поскольку

P
(1)
1 (t max(1))

P
(1)
1

=
h
(1)
1 (t max(1))d1

h
(1)
1 d1

=
h
(1)
1 (t max(1))

h
(1)
1

= k(1).

Во-вторых, коэффициент повышения K(1) является (в отличие от понижающего коэффи-

циента k(1), действующего только в первом подынтервале d1) общим для всех плотностей

h
(1)
i и всех вероятностей P

(1)
i в каждом из подынтервалов di, (i = 2, . . . , N). С учётом этих

дополнений для момента времени t max(1), когда плотности h
(1)
1 (t max(1)) и h

(1)
2 (t max(1))

должны сравняться, справедливы два очевидных равенства (1− P (1)
1 )K(1) + P

(1)
1 k(1) = 1,

h
(1)
2 K(1) = h

(1)
1 k(1).

(10)
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Решая (10), получим, что

h
(1)
1 k(1) =

h
(1)
1

P
(1)
1 + (1− P (1)

1 )h
(1)
1 /h

(1)
2

. (11)

Поскольку соотношения (9) и (11) описывают одну и ту же (изменившуюся к моменту

времени t max(1)) плотность h
(1)
1 , то, приравнивая их правые части, имеем

exp
(
−λ l

(1)

d1
t max(1)

)
(1− P (1)

1 ) + P
(1)
1 exp

(
−λ l

(1)

d1
t max(1)

) =
1

P
(1)
1 + (1− P (1)

1 )
h
(1)
1

h
(1)
2

,

откуда следует, что

h
(1)
1

h
(1)
2

exp
(
−λ l

(1)

d1
t max(1)

)
= 1.

В результате получаем выражение для максимальной продолжительности первого эта-
па t max(1), зависящее от размера детекторного окна l(1):

t max(1) =
1

λ

d1

l(1)
ln
h
(1)
1

h
(1)
2

. (12)

Одним из важных моментов, позволяющих провести точный аналитический расчёт и кон-
структивно построить оптимальный поисковый алгоритм, является то, что описываемая
соотношением (12) длительность первого этапа сканирования t max(1) зависит не от всех

параметров исходной плотности H(1)(x), а только от размера подынтервала d1 и отноше-

ния высот h
(1)
1 /h

(1)
2 . Поэтому расчёт продолжительности всех последующих этапов опти-

мальной поисковой процедуры (начиная со второго) не требует дополнительных вычисли-
тельных затрат и задаётся формулой, аналогичной (12). Так, для отыскания продолжи-

тельности t max(i) этапа с номером i в соотношении (12) необходимо сделать три простые

замены, а именно: 1) параметр l(1) следует заменить параметром l(i); 2) вместо величины

d1 нужно использовать величину (d1 + . . . + di); 3) отношение высот h
(1)
1 /h

(1)
2 необходимо

заменить отношением h
(1)
i /h

(1)
i+1. Последняя замена высот корректна, так как модифици-

рующаяся на каждом i-м этапе функция плотности H(1)(x) всегда умножается на один и
тот же общий для всех «подрастающих» подынтервалов di, (i = 2, . . . , N) повышающий

коэффициент K(i). В результате получаем соотношение для максимально допустимой про-
должительности i-го этапа в зависимости от размера детекторного окна l(i):

t max(i) =
1

λ(i)
ln
h
(1)
i

h
(1)
i+1

, λ(i) = λ
l(i)

(d1 + . . .+ di)
. (13)

Таким образом, для построения оптимальной поисковой процедуры достаточно рассчи-

тать набор параметров l
(i)
opt, при которых минимизируется математическое ожидание сум-

марного времени локализации разыскиваемого импульсного источника, а для определения
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оптимальных величин, описывающих максимально допустимую продолжительность поис-

ковых этапов t max
(i)
opt, будут использоваться найденные соотношения (14).

4.3. Расчёт параметров Q(i)
1 , Q

(i)
2 , t short (i) и ET uniform(ε/l

(i)
opt) для рекурсивного

соотношения (1). Параметр Q
(i)
1 представляет собой вероятность того, что на i-м этапе

поиска не будет зафиксировано ни одного импульса. Это может произойти в двух непе-
ресекающихся случаях: либо сигнальный источник находится вне пределов сканируемого
фрагмента (d1 + . . .+ di), либо разыскиваемый источник хотя и находится в пределах ска-
нируемого фрагмента, но за период сканирования ни один из (возможно) сгенерированных
им импульсов не попал в окно детектора.

С учётом (9) и (13)

Q
(i)
1 = Pr

(i)
2 + Pr

(i)
1 [exp (−λit max(i))] =

= Pr
(i)
2 + Pr

(i)
1

[
exp

(
−λi

1

λi
ln
h
(1)
i

h
(1)
i+1

)]
= Pr

(i)
2 + Pr

(i)
1

h
(1)
i+1

h
(1)
i

. (14)

Вероятность Q
(i)
2 является дополнением к вероятности Q

(i)
1 :

Q
(i)
2 = 1−Q(i)

1 = Pr
(i)
1

[
1−

h
(1)
i+1

h
(1)
i

]
. (15)

Для расчёта входящего в рекурсивное соотношение (1) параметра t short(i) используем
следующий стандартный приём. Если предположить, что некий пуассоновский источник
мощностью γ за фиксированный промежуток времени T long произвёл как минимум один
импульс, то математическое ожидание длины паузы от начала промежутка до генерации
источником первого импульса будет равно

T short =

T long∫
0

t
( γ exp (−γt)∫ T long

0 γ exp (−γτ) dτ

)
dt =

1

γ

(
1− γT long

exp (−γT long)

1− exp (−γT long)

)
. (16)

Если в (16) вместо переменных T long и γ подставить взятые из (13) величины t max(i) =

= (1/λ(i)) ln (h
(1)
i /h

(1)
i+1) (максимально допустимую продолжительность i-го этапа) и λ(i) =

=λl(i)/(d1+ . . .+di) (условную мощность источника на i-м этапе наблюдения), то получим

t short(i) =
1

λ

(d1 + . . .+ di)

l(i)

(
1−

ln (h
(1)
i /h

(1)
i+1)

h
(1)
i /h

(1)
i+1 − 1

)
, i = 1, . . . , (N − 1). (17)

Порядок расчёта выражения ET uniform(ε/l(i)), соответствующего математическому ожи-
данию времени исполнения оптимального алгоритма локализации равномерно распре-
делённого импульсного источника, можно найти в [14, 15]. Применительно к рассматрива-

емой задаче на этапе с номером i оптимальное значение величины ET uniform(i) должно

выбираться из набора

ET uniform j(i) =
j

λ

( li
ε

)1/j
, j = 1, . . . , n max(i), (18)
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где n max(i) — такое минимальное натуральное n, что( n

n+ 1

)n(n+1)
<
ε

li
.

5. Вариационная задача для расчёта оптимальных размеров детекторных
окон. В соответствии со схемой возвратной рекурсии (1) для нахождения параметров,
необходимых для построения оптимального поискового алгоритма и с помощью которых

рассчитывается математическое ожидание времени его исполнения, нам остаётся найти

оптимальные размеры детекторных окон l
(i)
opt. Действительно, в этом случае конкретные

величины t max
(i)
opt (оптимальные значения максимально допустимой продолжительности

каждого из поисковых этапов) определяются соотношением (13). Вероятности Q
(i)
1 и Q

(i)
2 ,

порядок расчёта которых изложен в разд. 4.3, не зависят от параметров оптимально-
го поискового алгоритма, а зависят лишь от исходной априорной плотности вероятно-
сти H(1)(x) и поэтому могут быть рассчитаны заранее. Входящие в рекурсивное соотно-

шение (1) величины t short(i) зависят от оптимальных размеров детекторных окон l
(i)
opt и

вычисляются в соответствии с соотношением (17). Математическое ожидание времени ис-
полнения алгоритма многоэтапной оптимальной локализации равномерно распределённого

источника ET uniform(ε/l
(i)
opt) зависит от оптимального размера детекторного окна l

(i)
opt,

и для его расчёта, как уже было отмечено, будет использоваться результат, полученный
в [14].

Поскольку размер детекторного окна l(i) на i-м этапе оптимального поискового ал-
горитма должен обеспечить минимум математическому ожиданию ET recurs(i), то для

нахождения его оптимального значения l
(i)
opt поступим следующим образом. Используя со-

отношения (13)–(15) и (17), (18), перепишем правую часть соотношения (1) в виде

ET recurs(i) =
1

λ

{
A(i)

( 1

l(i)

)2
+ jB(i)

( l(i)
ε

)1/j
+ const (i+ 1)

}
, (19)

где

A(i) = (d1 + . . .+ di)
[

Pr
(i)
1

(
1−

h
(1)
i+1

h
(1)
i

)
+ Pr

(i)
2 ln

h
(1)
i

h
(1)
i+1

]
; B(i) = Pr

(i)
1

(
1−

h
(1)
i+1

h
(1)
i

)
;

const (i+ 1) =
(

Pr
(i)
1

h
(1)
i+1

h
(1)
i

+ Pr
(i)
2

)
ET recurs(i+ 1); j = 1, n max(i).

Далее воспользуемся тем, что выражение ET recurs(i), рассматриваемое как функция

параметра l(i), достигает своего глобального минимума либо на границе анализируемой
области (напомним, что на i-м этапе граничными являются точки l(i) = ε и l(i) = (d1+. . .+

+ di)), либо во внутренней точке l
(i), в которой производная ∂ET recurs(i)/∂l(i) обращается

в нуль. Ввиду того, что коэффициенты A(i), B(i) и const (i+1) не зависят от параметра l(i),

то для нахождения внутренней точки l(i) с нулевой частной производной имеем уравнение

A(i)
(
− 1

(l(i))2

)
+B(i)ε−1/j(l(i))1/j−1 = 0. (20)



А. Л. Резник, А. А. Соловьев, И. Ю. Резник, Р. М. Кожевников 15

Разрешая его для всех целочисленных j из диапазона 1, n max(i), получим набор значений

l
(i)
j =

[([A(i)

B(i)

]j
ε
)]1/(j+1)

. (21)

Далее из совокупности, включающей в свой состав весь набор (21) и две граничные

точки l(i) = ε и l(i) = (d1 + . . . + di), в качестве оптимального размера l
(i)
opt следует вы-

брать то значение, в котором выражение (19) достигает минимума. Циклически повто-
ряя описанную процедуру, можно последовательно рассчитать все оптимальные значения

l
(N−1)
opt , l

(N−2)
opt , . . . , l

(1)
opt и полный набор параметров, определяющих алгоритм оптимальной

локализации случайного точечно-импульсного источника, имеющего кусочно-постоянную
плотность на интервале поиска. Осталось заметить, что для инициации изложенного вы-
числительного процесса в качестве начального значения ET recurs(N) должно быть взято
полученное в [14] математическое ожидание времени локализации случайного равномерно
распределённого источника.

Заключение. Предложенный метод возвратно-рекурсивного построения алгоритма
локализации точечно-импульсного источника был нами полностью формализован и ре-
ализован в виде автономного программного блока. Преимущество изложенного подхода
заключается в том, что, во-первых, при его использовании не возникает вопрос о близости
полученного решения к оптимальному поисковому алгоритму, так как программная схе-
ма осуществляет не численный приближённый расчёт, а вычисляет параметры точного
аналитически обоснованного решения. Во-вторых, такой подход не требует наличия серь-
ёзных вычислительных ресурсов, поэтому расчёт параметров оптимального алгоритма
локализации точечно-импульсного источника, имеющего кусочно-постоянную плотность

практически произвольной сложности, может осуществляться на обычном персональном
компьютере средней производительности.

Финансирование. Исследование выполнено за счёт гранта Российского научного
фонда (проект № 24-21-00136).
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