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Предложена методика декомпозиции области значений двухмерных спектральных призна-
ков по значениям составляющих их коэффициентов корреляции. Основа методики заклю-
чается в анализе произведения нормированных значений спектральных признаков. Осо-
бенность используемого показателя и вводимые пользователем пороги на его значения

позволяют осуществить декомпозицию исходных статистических данных и картирование

получаемых результатов. В отличие от традиционных методов предлагаемый подход об-
ладает более высокой вычислительной эффективностью, что необходимо при обработке
больших объёмов статистических данных. Рассматриваются результаты применения ме-
тодики при обработке данных дистанционного зондирования природного объекта.
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Введение. На первом этапе обработки данных дистанционного зондирования исполь-
зуются алгоритмы автоматической классификации, которые предназначены для обнару-
жения компактных групп наблюдений в пространстве значений спектральных признаков

исследуемых природных объектов [1–4]. Полученные результаты необходимы для дешиф-
рирования исходных снимков с последующим оцениванием состояний природного объекта

на основе алгоритмов распознавания образов [5]. При этом опускается объективный фак-
тор — состояние природного объекта, соответствующего элементу земной поверхности,
определяется не только значениями спектральных признаков, но и зависимостью меж-
ду ними. Данный вывод подтверждает необходимость корректировки методики обработки
данных дистанционного зондирования. Для частичного решения этой проблемы предложе-
ны методы корреляционного анализа, которые основаны на сегментации исходного снимка,
вычислении коэффициентов корреляции и их анализе [6–8]. При этом не проводится анализ
составляющих коэффициента корреляции, которые являются количественными характе-
ристиками элементов земной поверхности.

В данной работе предлагается методика декомпозиции двухмерных спектральных

признаков по степени их зависимости в конкретных условиях на основе составляющих

коэффициента корреляции. Рассматривается применение полученных результатов при об-
работке данных дистанционного зондирования природного объекта.
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Декомпозиции двухмерных спектральных признаков. Имеются данные ди-
станционного зондирования, представленные выборкой V = (xi1, x

i
2, z

i
1, z

i
2, i = 1, n ), ко-

торая составлена из наблюдений спектральных признаков x1, x2 и соответствующих им
координат (z1, z2) элементов земной поверхности. За основу анализа зависимости между
x1 и x2 в конкретных условиях x

i
1, x

i
2 примем составляющие коэффициента корреляции.

Представим коэффициент корреляции между случайными величинами x1, x2 в виде
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— оценка среднего квадратического отклонения xj ;

x̄j =
1

n
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xij — среднее значение признака xj , j = 1, 2.

Коэффициент корреляции (1) формируется на основе его составляющих ri1, r
i
2, i = 1, n,

значения произведения которых характеризуют зависимость между случайными величи-
нами x1, x2 в конкретных условиях x

i
1, x

i
2.

Произведение r = r1 r2 нормированных значений x1, x2 является знакопеременной слу-
чайной величиной с плотностью вероятности p(r). Пример закона распределения r пред-
ставлен на рис. 1, который получен при обработке данных дистанционного зондирования
с аппарата MODIS/Terra лесного массива на юге Красноярского края [5]. Спектральные
признаки x1 соответствуют длине волны (545–565 нм), а x2 — (1230–1250 нм). При оце-
нивании плотности вероятности p(r) использовалась непараметрическая статистика Ро-
зенблатта — Парзена при объёме исходных статистических данных n = 10201 [9, 10], а
выбор её коэффициента размытости осуществлялся на основе методики [11–13].

По результатам исследований ряду участков лесных массивов соответствовали по-
добные законы распределения параметра r. Их объединяет свойство асимметричности,
нахождение моды в окрестности значений r = 0. Отличие плотностей вероятностей p(r)
наблюдается при больших положительных и отрицательных значениях r, что определяет
усиление зависимости между спектральными признаками и является основой обнаружения

особенностей исследуемого природного объекта.
С этих позиций определим методику декомпозиции исходных данных дистанционного

зондирования при исследовании состояний природного объекта.
1. По исходным данным V сформировать выборку V ′ = (xi1, x

i
2, i = 1, n ).
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Рис. 1. Непараметрическая оценка плотности вероятности значений r = r1r2
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2. В соответствии с выражением (1) сформировать массив Vr = (ri, i = 1, n ) и осуще-
ствить синтез непараметрической оценки плотности вероятности p(r) [9, 10]:
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)
, (2)

где ядерные функции Φ(u) удовлетворяют следующим условиям:
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Коэффициент размытости ядерных функций c→ 0 при n→∞.
3. Определить оценку оптимального коэффициента размытости ядерных функций ста-

тистики (2) из условия минимума по c критерия [13]:
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Например, при ступенчатой ядерной функции
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составляющие первого слагаемого в выражении (3) определяются значениями
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Для составляющих второго слагаемого в выражении (3) значения ядерной функции
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4. Исследуя особенности плотности вероятности p̄(r), вычислить её моду r̃ и пара-
метр λ, который характеризует симметричный фрагмент p̄(r) относительно r̃:

r̃∫
r̃−λ

p̄(r) dr =

r̃+λ∫
r̃

p̄(r) dr.

5. Определить соответствие между интервалами значений параметров ri > λ, ri < λ
в выборке Vr и состояниями природного объекта с использованием результатов картиро-
вания по данным V .
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Рис. 2. Фрагмент съёмки с помощью спутника Landsat 7/ETM+ от 21 августа
2015 г. Отображение комбинации каналов x3, x2, x1 в формате RGB

Дальнейшее развитие предлагаемой методики состоит во введении специалистом-
экспертом новых порогов в интервалах r > λ, r < λ и сопоставлении получаемых ре-
зультатов с исходными данными V .

Анализ данных дистанционного зондирования. Рассмотрим применение

предлагаемой методики при исследовании участка территории, покрытой травяно-
кустарничковой растительностью вдоль речной сети в степной зоне восточной части Убсу-
нурской котловины Республики Тыва. Съёмка участка произведена 21 августа 2015 г.
спектрорадиометром ETM+, установленным на спутнике Landsat 7 [14]. Данные съёмки
получены с помощью геопортала Earth Explorer [15] из набора данных второго уровня об-
работки, включающего атмосферную коррекцию [16]. На снимке присутствуют типичные
облака и тени, затрудняющие дешифрирование типов наземного покрова (рис. 2).

Задача выделения облаков и их удаления из снимков до сих пор является актуаль-
ной [17, 18]. Современные разрабатываемые алгоритмы детектирования облачности опи-
раются на нейронные сети и вводимые пороговые значения [18–21]. Однако такие алгорит-
мы требуют использования значительных вычислительных ресурсов на подготовительных

этапах расчётов либо при непосредственном детектировании облачности [22]. В случаях
оперативной обработки больших массивов данных дистанционного зондирования требу-
ется использование относительно быстрых алгоритмов выделения облаков с удовлетвори-
тельной точностью.

При анализе данных дистанционного зондирования каждый элемент земной поверхно-
сти задавался шестью спектральными признаками x = (xv, v = 1, 5 , x7), характеристика
которых представлена в табл. 1.

Выборка V = (xi1, x
i
2, x

i
3, x

i
4, x

i
5, x

i
7, i = 1, 35907 ) формировалась по данным дистанци-

онного зондирования территории (рис. 2).
Ставилась задача обнаружения соответствия между результатами декомпозиции пары

спектральных признаков и идентифицируемыми природными объектами. По результатам
вычислительного эксперимента установлены два признака x4 и x7, которые соответствуют
поставленной задаче. Плотность вероятности произведения r = r4r7 составляющих оценки
коэффициента корреляции случайных величин x4, x7, вычисляемых по выборке V4,7 =
= (xi4, x

i
7, i = 1, 35907 ), представлена на рис. 3.
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Таб л иц а 1

Характеристика используемых спектральных каналов аппарата Landsat 7

Спектральный

канал

Диапазон

спектра, нм
Разрешение,
м/пиксель

Название

x1 450–515 30 Голубой

x2 525–605 30 Зелёный

x3 630–690 30 Красный

x4 775–900 30 Ближний инфракрасный

x5 1550–1750 30 Средний (коротковолновый) инфракрасный
x7 2090–2350 30 Средний (коротковолновый) инфракрасный

_2 0
0

1

2 4 6 8 10 12 14 16 18 r

p(r)

Рис. 3. Непараметрическая оценка плотности вероятности значений r = r4r7
при оценке их коэффициента корреляции R = 0,896

Таб л иц а 2

Интервалы значений параметра r = r4r7
и соответствующие им области декомпозиции природного объекта

Области

декомпозиции

Цвет областей

на рис. 3
Интервалы значений

параметра r
Оценки вероятностей принадлежности

пикселей областям Ωj , j = 1, 4

Ω0 Чёрный −1,35 6 r < 0 0,394
Ω1 Синий 0 6 r < 0,53 0,364
Ω2 Голубой 0,53 6 r < 1,48 0,077
Ω3 Зелёный 1,48 6 r < 2,42 0,033
Ω4 Жёлтый 2,42 6 r < 6,21 0,105
Ω5 Оранжевый 6,71 6 r < 10 0,02
Ω6 Красный 10 6 r 6 17,57 0,007
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Рис. 4. Пространственное отображение интервалов декомпозиции параметра r = r4r7

Для оценивания плотности вероятности p(r) использовались статистика (2) и методи-
ка её оптимизации из условия минимума критерия (3). Интервалы значений параметров r
и их характеристики приведены в табл. 2.

Пространственное отображение интервалов декомпозиции параметра r приведено
на рис. 4 при коэффициенте корреляции между спектральными признаками R = 0,896.
Экспертный анализ рис. 4 показал, что в результате использования предлагаемой методи-
ки выделяются облачность, тени от облаков и полупрозрачная дымка на фоне раститель-
ного покрова. Наблюдается частичное перепутывание водного русла реки с тенями, что
связано с их низкими значениями спектральных яркостей в анализируемых инфракрасных

каналах.
На рис. 5, a приведено изображение, представляющее комбинацию использованных

в анализе признаков x4 и x7. Пространственное отображение интервалов декомпозиции
параметра в условиях r > 0,7 приведено на рис. 5, b.

Белый цвет (область декомпозиции Ω0) соответствует интервалу значений

r ∈ [−1,35; 0,7], которому, в свою очередь, соответствует оценка вероятности попадания
пикселей в исследуемый интервал P̄0 = 0,797. Синим цветом обозначена область деком-
позиции Ω1 для условия r ∈ [0,7; 1,54], при этом значение P̄1 = 0,041. Голубой цвет (Ω2)
на рис. 5 соответствует интервалу параметра r ∈ [1,54; 2,39] при значении P̄2 = 0,03.
Зелёным и жёлтым цветом обозначены области Ω3 и Ω4, которые характеризуются интер-
валами [2,39; 3,23], [3,23; 5,76] параметра r и соответствующими им оценками вероятностей
P̄3 = 0,026, P̄4 = 0,076. Для областей декомпозиции Ω5 и Ω6 характерен оранжевый цвет

при r ∈ [5,76; 9,13], P̄5 = 0,02 и красный при r ∈ [9,13; 17,57], P̄6 = 0,01. Установлено, что
тень от облака в основном характеризуется параметром r ∈ [4; 5] (см. рис. 3).

Подобное пороговое значение r > 0,7 позволило визуально отделить облачность и тени
от фоновой территории (см. рис. 5, b). Облачность (яркие объекты) достаточно хорошо
отделилась от фона, однако тени (тёмные объекты) только частично дифференцировались
от водной поверхности. Для уточнения выделения теней от облаков можно произвести ком-
плексный анализ других комбинаций спектральных каналов с целью подбора оптимальных

пороговых значений компонентов составляющих коэффициента корреляции для идентифи-
кации теней от облаков.
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Рис. 5. Фрагмент съёмки с помощью спутника Landsat 7/ETM+ от 21 августа
2015 г. (RGB: x7, x7, x4) (a), пространственное отображение интервалов декомпо-

зиции параметра r = r4r7 > 0,7 (b)

Заключение. Состояние природных объектов по данным дистанционного зондиро-
вания определяется произведением нормированных значений составляющих коэффициента

корреляции двухмерных спектральных признаков. Этот параметр характеризует зависи-
мость между спектральными признаками в конкретных условиях. При анализе данных
дистанционного зондирования значение введённого параметра является знакопеременным

и отличается количественно, что позволяет обоснованно осуществлять декомпозицию дан-
ных дистанционного зондирования. Полученные выводы подтверждаются применением

предлагаемой методики декомпозиции данных дистанционного зондирования при анали-
зе состояний травяно-кустарничковой растительности вдоль речной сети в степной зоне
при наличии облачности и теней, затрудняющих дешифрирование типов наземного по-
крова. В этих условиях применение предлагаемого подхода позволяет эффективно решить
проблему выделения облаков по сравнению с традиционными методами, требующими ис-
пользование значительных вычислительных ресурсов в условиях больших объёмов данных

дистанционного зондирования.
Дальнейшее развитие предлагаемого метода состоит в его обобщении на многомерные

условия и сопоставлении получаемых результатов при его применении в задаче оценивания

состояний природных объектов.
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