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Предложен способ моделирования случайных последовательностей, составленных из циф-
ровых отсчётов стационарных случайных процессов с заданной спектральной плотностью

мощности (СПМ) в системах цифровой обработки сигналов (СЦОС). Способ учитывает
ограничение спектра сигнала входными устройствами СЦОС и особенности представле-
ния передаточных функций с использованием быстрого преобразования Фурье. В качестве
исходного процесса для моделирования принят цифровой белый шум с гауссовским или

равномерным распределением. Показано, что оценка СПМ приведённых в результате мо-
делирования последовательностей является несмещённой, её среднее значение совпадает
с отсчётами исходной СПМ. Получено выражение для расчёта среднеквадратической по-
грешности оценки.
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Введение. В связи с тем, что цифровая обработка сигналов в настоящее время ши-
роко используется для решения задач связи, навигации, радиолокации, дистанционного
зондирования Земли, масс-спектрометрии, медико-биологических исследований и многих
других, неотъемлемой частью проектирования, синтеза и анализа современных сложных
систем является цифровое моделирование их функционирования, а также происходящих
в них физических процессов. Системы цифровой обработки сигналов (СЦОС) используют
последовательности, полученные в результате аналого-цифрового преобразования процес-
са на входе системы, при этом, как правило, применяется дискретизация с постоянным
временны́м интервалом τd между отсчётами. Дискретные последовательности характе-
ризуются периодичностью их спектра [1, 2], что без принятия специальных мер может
привести к искажениям полезного сигнала, который обусловлен наложением составляю-
щих его собственного спектра, следующих с периодом повторения Fd = 1/τd, а также
помеховых сигналов из соседних частотных диапазонов. Для уменьшения этих искаже-
ний входные цепи СЦОС всегда содержат аналоговые фильтры низких частот (ФНЧ) с
полосой пропускания Π, совпадающей с шириной спектра полезного сигнала ∆FS , а шаг
дискретизации выбирают из условия τd 6 ∆FS/2 [2].

Существенную роль в СЦОС, работающих при малых отношениях сигнал/шум, игра-
ют собственные шумы электронных устройств и внешние помехи [3–6]. Поэтому важным
этапом проектирования систем является анализ их помехоустойчивости. Из-за сложности
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систем и применяемых в них алгоритмов анализ их характеристик на этапе проектиро-
вания зачастую возможен только методами имитационного моделирования. Также в на-
стоящее время для сокращения временны́х и финансовых затрат при проведении испыта-
ний готовых изделий стали широко применять полунатурное моделирование. Его смысл
состоит в том, что тестовые сигналы (их структура, форма и мощность) формируются
сначала методом моделирования на ЭВМ, а затем с помощью специальных аппаратных

средств преобразуются в реальные физические воздействия на СЦОС [7]. Таким образом,
актуальной является задача цифрового моделирования дискретных последовательностей,
составленных из отсчётов процесса, наблюдаемого на входе СЦОС и представляющего со-
бой результат взаимодействия полезного сигнала и случайной (шумовой) составляющей.

Методы цифрового моделирования случайных процессов с учётом дискретного харак-
тера выборки начали интенсивно развиваться с появлением первых ЭВМ [8–13]. Суще-
ственную часть среди них занимают задачи моделирования стационарных случайных по-
следовательностей (ССП). В большинстве публикаций цифровое моделирование ССП рас-
сматривают как задачу формирования случайной дискретной последовательности с задан-
ной корреляционной функцией (КФ), используя для этого методы канонического разложе-
ния или формирующего фильтра [8, 14–17]. Недостатком метода канонического разложения
является сложность формирования случайной последовательности большой длины, а суще-
ствующие алгоритмы на основе метода формирующего фильтра требуют большого объёма

подготовительных расчётов и вычислительных ресурсов, что затрудняет их применение.
Кроме того, большинство известных алгоритмов сосредоточено на моделировании случай-
ного процесса с КФ, максимально приближённой к истинной КФ непрерывного процесса,
хотя для исследования СЦОС достаточно обеспечить заданную корреляцию отсчётов на-
блюдаемого процесса с учётом предварительной аналоговой фильтрации входного сигнала.

Ограничение полосы частот сигнала на входе СЦОС создаёт благоприятные условия

для применения метода формирующего фильтра непосредственно в частотной области.
Использование быстрого преобразования Фурье (БПФ) существенно сокращает при этом
требования к производительности вычислительных систем. Так, в работе [18] веществен-
ную выборку из ССП x(t) со спектральной плоскостью мощности (СПМ) G(f) в предпо-
ложении, что G(0) = 0 и G(∆fN/2) = 0, предлагается моделировать в соответствии с
алгоритмом

x(nτd) =

N/2−1∑
l=0

√
G(l∆f) ∆f cos (2πl∆f nτd + ϕl), (1)

где ∆f = 1/TL — разрешение по частоте, TL = Nτd — длительность реализации ССП,
N — число отсчётов, ϕl — независимые равномерно распределённые на интервале [0, 2π]
случайные величины, l = 0, . . . , N/2− 1. Для ускорения вычислений реализации (1) пред-
ложено использовать процедуру БПФ.

Хотя требование G(0) = 0 и G(∆f N/2) = 0 во многих случаях не является обремени-
тельным (обычно мы имеем дело со стационарными случайными процессами со средним
значением, равным нулю, а применение аналогового ФНЧ на входе СЦОС обеспечивает

условие G(∆fN/2) ≈ 0), такой подход не позволяет моделировать многие реальные стаци-
онарные случайные процессы, такие как шум RC -цепи или стационарный фликкер-шум.

Целью данной работы является разработка способа моделирования последовательно-
сти дискретных отсчётов стационарных случайных процессов методом цифрового фор-
мирующего фильтра в частотной области с применением в качестве исходного процесса

дискретного белого шума и процедур прямого и обратного БПФ (ОБПФ).



А. Г. Вострецов, С. Г. Филатова, Д. И. Вольхин 39

Àíàëîãîâûé
ÔÍ×

ÀÖÏ
Óñòðîéñòâî

ÖÎÑ

x(t) y(t) y[n]

Рис. 1. Упрощённая схема СЦОС

Алгоритм моделирования ССП. На рис. 1 показана упрощённая схема СЦОС.
На вход системы поступает непрерывный случайный процесс x(t) с заданной СПМ G(f).
Его спектр предварительно ограничивается с помощью аналогового ФНЧ с прямоуголь-
ной полосой пропускания Π = ∆FS . Ограниченный по полосе частот аналоговый процесс
y(t) преобразуется в цифровую форму, при этом применяется равномерная дискретиза-
ция сигнала с фиксированным шагом τd = 1/(k∆FS) (для СЦОС обычно принимают

k = 3–5), и предполагается, что разрядность аналого-цифрового преобразователя (АЦП)
достаточно велика, чтобы можно было пренебречь погрешностью квантования входного

процесса. В результате на выходе АЦП имеется последовательность цифровых отсчётов

исходного сигнала y[n] = y(nτd), длина N которой определяется длительностью TL мо-
делируемой реализации случайного сигнала: N = bTL/τd + 0,5 c, где b·c означает взятие
целой части числа. Из элементов последовательности y[n] формируется вектор отсчётов
y = {y0, y1, . . . , yN−1}> (> — знак транспонирования), который подвергается дальнейшей
цифровой обработке. Для использования процедуры БПФ число N выбирается из условия

N = 2m (m — целое число) путём соответствующей корректировки величин TL или τd.
Таким образом, задача состоит в моделировании вектора отсчётов y при условии, что

на входе системы действует процесс x(t) с заданными параметрами. Искомый вектор y
формируется путём цифровой фильтрации в частотной области дискретного белого шу-
ма с интервалами между отсчётами, равными τd. Общая схема моделирования показана
на рис. 2.

Сначала формируется вектор отсчётов ξ = {ξ0, . . . , ξN−1}> дискретного белого шума
размерностью N с дисперсией σ2

0 = N0/(2τd), где N0 — односторонняя СПМ белого шума.
Затем с помощью БПФ вычисляется дискретный фурье-образ случайного вектора ξ, име-
ющий вид Ξ = FN (ξ) = {Ξ0 . . .ΞN−1}>, где FN ( · ) означает БПФ N -мерного вектора, т. е.

Ξl =
1

N

N−1∑
n=0

ξn exp
{
− j 2π

N
ln
}
,

при l = 0, . . . , N − 1. В силу свойства симметрии БПФ и того, что вектор отсчётов ξ
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Рис. 2. Схема моделирования вектора отсчётов y на входе устройства ЦОС
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действительный, имеем Ξl = Ξ∗N−l, l = 1, . . . , N/2, знак (∗) означает комплексное сопряже-
ние.

Полученный в результате БПФ комплексный вектор Ξ поэлементно умножается на

вектор Hd = {Hd
0 , . . . , H

d
N−1}> отсчётов амплитудно-частотной характеристики (АЧХ)

H(f) формирующего фильтра, взятых с шагом ∆f = 1/(Nτd) (на риc. 2 поэлементное
умножение обозначено знаком (◦)). Так как СПМ шума GΠ(f) на выходе ФНЧ СЦОС

имеет вид

GΠ(f) =

{
G(f) при |f | 6 Π;

0 при |f | > Π,

то непрерывная АЧХ формирующего фильтра H(f) =
√
GΠ(f). Фазочастотная характе-

ристика фильтра принята равной нулю.
В силу симметрии используемого БПФ компоненты вектора Hd вычисляются по сле-

дующему алгоритму:

Hd
l =

{
H(l∆f) при l 6 N/2;

H[(N − l) ∆f ] при l > N/2.
(2)

После поэлементного умножения векторов Ξ и Hd получаем дискретный фурье-образ
Z = Ξ ◦ Hd прототипа вектора y отсчётов случайного процесса с СПМ GΠ(f). Поскольку
вектор Hd является действительным и симметричным относительно компонента с номе-
ром N/2, то для компонентов вектора Z также справедливы равенства Zl = Z∗N−l. Это

предполагает, что вектор z = F−1
N (Z) = {z0, . . . , zN−1}>, полученный в результате ОБПФ

F−1
N ( · ), где

zl =
N−1∑
n=0

Zn exp
{
j

2π

N
ln
}
, l = 0, . . . , N − 1,

является также действительным. Однако в силу конечной разрядной сетки вычислителя
вектор z в общем случае может оказаться комплексным с небольшой, как показало мо-
делирование, мнимой составляющей. Для получения действительного вектора отсчётов
y = {y0, . . . , yN−1}> c заданной СПМ выполняется преобразование вектора z по следую-
щему алгоритму:

yn = |zn| csgn (zn), n = 0, . . . , N − 1,

где csgn (z) — функция знака комплексного числа:

csgn (z) =

{
1 при Re (zn) > 0 ∨ {[Re (zn) = 0] ∧ [Im (zn) > 0]};
−1 при Re (zn) < 0 ∨ {[Re (zn) = 0] ∧ [Im (zn) < 0]}.

Имитационное моделирование ССП. На основе разработанного алгоритма прове-
дено имитационное моделирование случайных последовательностей двух типов: случайной
последовательности, полученной дискретизацией собственных шумов RC-цепи, и шумов
напряжения малошумящего криогенного усилителя постоянного тока (УПТ), выполненно-
го на двух коммерчески доступных биполярных кремниевых малошумящих транзисторах

SSM2212 [19]. В качестве исходного процесса использовался дискретный белый шум с нор-
мальным и равномерным распределениями. При этом односторонняя СПМ белого шума
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принималась равной двум. Для формирования гауссовской последовательности применял-
ся датчик гауссовских случайных чисел с нулевым средним и дисперсией σ2

0, а для по-
следовательности равномерно распределённых случайных величин — датчик случайных

чисел, равномерно распределённых на интервале [−
√

3σ0,
√

3σ0].
В соответствии с предложенным алгоритмом (см. рис. 2) для каждого типа последова-

тельностей независимо были смоделированы K реализаций случайных последовательно-

стей длиной N в виде случайных векторов y (RC,k) = {y(RC,k)
0 , . . . , y

(RC,k)
N−1 }

> для собствен-

ных шумов RC-цепи и y (УПТ,k) = {y(УПТ,k)
0 , . . . , y

(УПТ,k)
N−1 }> для шумов напряжения УПТ,

k = 1, . . . , K, K = 30 и K = 10000.
Спектральная плотность мощности полученных последовательностей y(RC,k) и

y(УПТ,k) оценивалась следующим образом. Для каждого вектора вычислялись выбороч-
ные спектральные плотности

g
(RC)
k (l∆f) = Nτd |Y

(RC,k)
l |2, g

(УПТ)
k (l∆f) = Nτd |Y

(УПТ,k)
l |2, (3)

где Y
(RC,k)
l , Y

(УПТ,k)
l , l = 0, . . . , N − 1 — коэффициенты БПФ:

Y
(RC,k)
l =

1

N

N−1∑
n=0

[
y

(RC,k)
n exp

(
−j 2π

N
ln
)]
, Y

(УПТ,k)
l =

1

N

N−1∑
n=0

[
y

(УПТ,k)
n exp

(
−j 2π

N
ln
)]
.

Затем формировались оценки СПМ путём усреднения выборочных значений по K реали-
зациям:

ĜRC(l∆f) =
1

K

K∑
k=1

g
(RC)
k (l∆f), ĜУПТ(l∆f) =

1

K

K∑
k=1

g
(УПТ)
k (l∆f). (4)

При моделировании ССП с заданной СПМ закон распределения случайного процесса

чаще всего не принимается во внимание [8, 20], так как после прохождения через частотно-
избирательные цепи он нормализуется [21]. Учитывая, что в качестве исходного процесса
для моделирования последовательностей использовался дискретный белый шум с нуле-
вым средним значением, нетрудно убедиться, что в (3) действительные и мнимые ча-

сти коэффициентов БПФ Y
(RC,k)
n и Y

(УПТ,k)
n будут некоррелированными. Пусть GΠ

RC(l∆f)

и GΠ
УПТ(l∆f) — значения моделируемых СПМ в точках l∆f при l = 0, . . . , N/2. Если

дискретный белый шум является гауссовским, то компоненты Re [Y
(RC,k)
l ] и Im[Y

(RC,k)
l ],

а также Re[Y
(УПТ,k)
l ] и Im [Y

(УПТ,k)
l ] будут статистически независимыми гауссовски-

ми случайными величинами с нулевым средним значением и одинаковыми дисперсия-
ми σ2

RC,l = σ2
0G

Π
RC(l∆f)/(2N) и σ2

УПТ,l = σ2
0G

Π
УПТ(l∆f)/(2N) соответственно. Для рав-

номерно распределённого дискретного белого шума распределение рассматриваемых ко-
эффициентов БПФ с ростом N будет стремиться к гауссовскому закону, и при боль-
ших N их также можно приближённо принять в качестве независимых гауссовских

случайных величин. Таким образом, случайные величины (2N |Y (RC,k)
l |2/GΠ

RC(l∆f)σ2
0) и

(2N |Y (УПТ,k)
l |2/GΠ

УПТ(l∆f)σ2
0) будут иметь распределение χ-квадрат с двумя степенями

свободы. Отсюда математические ожидания и дисперсии оценок СПМ (4):

M [ĜRC(l∆f)] =
2σ2

0G
Π
RC(l∆f)

N
= GΠ

RC(l∆f);
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D [ĜRC(l∆f)] =
[2σ2

0G
Π
RC(l∆f)/N ]2

K
=

[GΠ
RC(l∆f)]2

K
;

(5)

M [ĜУПТ(l∆f)] = GΠ
УПТ(l∆f); D [ĜУПТ(l∆f)] =

[GΠ
УПТ(l∆f)]2

K
, (6)

где M [ · ] — оператор вычисления математического ожидания, D [ · ] — оператор вычис-
ления дисперсии при l = 0, . . . , N/2. При l = N/2 + 1, . . . , N − 1 в правых частях формул
(5)–(6) l следует заменить на N− l. Таким образом, оценки СПМ (4) будут несмещёнными
со среднеквадратическими отклонениями (СКО)

σĜRC(l∆f) =
GΠ

RC(l∆f)√
K

, σĜУПТ(l∆f) =
GΠ
УПТ(l∆f)√

K

соответственно. Относительное СКО для оценок СПМ составит величину δ = 1/
√
K.

При моделировании шума RC-цепи в качестве входного сигнала x(t) в схеме на
рис. 1 рассматривался шумовой процесс на выходе RC-цепи, обусловленный сопротивле-
нием шунтирующего резистора R = 4,72 ГОм и входной ёмкостью транзистора JFE 2140
C = 13 пФ (постоянная времени цепи τ = RC = 0,061 с). Влияние собственного входного
сопротивления транзистора не учитывалось, так как оно намного превосходит сопротив-
ление резистора R и составляет величину порядка ТОм.

Спектральная плотность мощности шума непрерывного процесса на выходе RC-цепи
задаётся следующей формулой [21]:

GRC(f) =
2ασ2

RC

α2 + (2πf)2
, (7)

где α = 1/τ ; σ2
RC = NRΠш/2 — дисперсия случайного процесса на входе RC-цепи;

Πш =

∫ ∞
−∞

∣∣∣ 1

1 + j2πfτ

∣∣∣2 df — шумовая полоса RC-цепи, NR = 4kbTR = 7,816 ×

× 10−11 В2/Гц — односторонняя СПМ белого шума, обусловленного резистором R при

температуре 300 К (kb = 1,38 · 10−23 Дж/К — постоянная Больцмана). При моделирова-
нии было принято TL = 4 с, N = 212, τd = TS/N = 9,72 · 10−4 с, Π = 1/(3τd) = 341,333 Гц.
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Рис. 3. График дискретной АЧХ формирующего фильтра: для RC-цепи (a) и
криогенного УПТ (b) [21]
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Рис. 4. Спектральная плотность мощности собственного шума на выходе RC-цепи:
a, b — при оценке по 30 опытам; c — при оценке по 10000 опытов
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Рис. 5. Спектральная плотность напряжения собственного шума УПТ: a, b —
при оценке по 30 опытам; c — при оценке по 10000 опытов
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Для этих значений параметров шумовая полоса составила величину ΠшR = 8,109 Гц,
дисперсия шума на выходе RC-цепи после аналогового ФНЧ с полосой Π равнялась

σ2
RC = 3,169 · 10−10 В2. На рис. 3, a приведён график дискретной АЧХ HdRC

l форми-
рующего фильтра для RC-цепи, вычисленной по формуле (2).

В качестве СПМ стационарного шума напряжения криогенного УПТ была принята

усреднённая СПМ GУПТ(f), полученная экспериментально при температуре T = 77 К [19]
и экстраполированная до 0 Гц (рис. 3, b). При моделировании шума УПТ было принято
TS = 10 с, N = 212, τd = TS/N = 2,441 · 10−3 с, Π = 1/(3τd) = 136,533 Гц.

На рис. 4 приведены СПМ собственных шумов RC-цепи, кривая 1 (показана точками)
представляет собой теоретическую кривую зависимости СПМ, определяемую зависимо-
стью (7), кривая 2 (пунктир) — построенную кривую в соответствии с формулой (2),
кривая 3 (сплошная линия) — СПМ, полученную моделированием. На рис. 4, a, b кри-
вые 3 показывают результаты моделирования по K = 30 опытам, на рис. 4, c — по

K = 10000 опытам.
Из рис. 4 видно, что результаты моделирования хорошо согласуются с результата-

ми расчётов. Относительное СКО оценок от истинного значения составляет величину

δRC = 0,183 при K = 30, δRC = 0,01 при K = 10000.
Гистограммы 106 отсчётов случайного процесса, построенные по результатам моде-

лирования на основе гауссовского и равномерно распределённого белого шума показали

хорошее совпадение обеих гистограмм и теоретической гауссовской плотности вероятно-
сти.

Результаты моделирования собственных шумов напряжения УПТ показаны на рис. 5,
где кривая 1 (показана пунктиром) представляет собой сглаженную, экспериментально
полученную кривую зависимости СПМ GΠ

УПТ(f), кривая 2 (сплошная линия) — СПМ

ĜУПТ(f), полученную моделированием. На рис. 5, a, b кривые 2 показывают результаты
моделирования по K = 30 опытам, на рис. 5, c — по K = 10000 опытам.

В данном случае гистограммы 106 отсчётов случайного процесса, построенные по ре-
зультатам моделирования на основе гауссовского и равномерно распределённого белого

шума показали хорошее совпадение обеих гистограмм и теоретической гауссовской плот-
ности вероятности.

Заключение. Предложен метод цифрового моделирования последовательности N
дискретных отсчётов стационарных случайных процессов с заданной СПМ, формирую-
щихся на выходе АЦП цифровой системы с учётом ограничения полосы частот на её входе.
Основу метода составляет фильтрация в частотной области с использованием БПФ пред-
варительно сформированной последовательности из N отсчётов дискретного белого шума

с нормальным или равномерным распределением. Применение БПФ обеспечивает высокую
скорость моделирования. Возможность варьирования длины моделируемой последователь-
ности и шага дискретизации позволяет исследовать СЦОС при различных режимах рабо-
ты устройства дискретизации. Для получения реализации большой длительности можно,
используя свойство линейности БПФ, осуществить раздельное моделирование реализаций
узкополосной низкочастотной и широкополосной составляющих шума, например компози-
ции отсчётов белого и фликкер-шумов на выходе усилителя. Для этого низкочастотная
составляющая шума моделируется на временно́м интервале большой длительности с ред-
ким шагом дискретизации, а широкополосная компонента (белый шум) формируется из
последовательных независимых фрагментов малой длительности с коротким шагом дис-
кретизации. Тем самым учитываются ограничения на доступную размерность БПФ, а
значения отсчётов низкочастотной составляющей в фрагментах широкополосной части

вычисляются с помощью интерполяции уже имеющихся отсчётов низкочастотной части.
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