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Введение. К числу важных проблем геоэкологического мониторинга окружающей

среды относится задача обнаружения и определения местоположения мощных источников

импульсной природы — различных карьерных и полигонных взрывов, падающих на Зем-
лю тел в виде отработанных ступеней ракет при спутниковых запусках, ударных машин
на строительных объектах, осколков метеоритов и др. — по сейсмическим волнам в Земле

и акустическим в атмосфере, порождаемым такими источниками. Актуальность решения
подобных задач определяется геоэкологическими рисками для окружающей социальной

инфраструктуры и прежде всего для людей, которые порождают такого типа источни-
ки. В частности, это относится к разрушительным последствиям от взрывов в районах
проведения угледобычи открытым способом, что характерно для угледобывающей обла-
сти Кузбасса. В рассматриваемых ситуациях экологические риски, оцениваемые удельной
плотностью акустической энергии, могут многократно возрастать (в 50 раз и более) из-за
развивающегося явления пространственной фокусировки геоакустических волновых полей

в заданном азимутальном направлении в результате взаимодействия с метеофакторами

(направлением и скоростью ветра, влажностью и др.), а также характерного покрова зем-
ной поверхности [1–3].

В данной работе рассмотрены новые подходы к решению первоначально обозначенных

задач. Их эффективность оценивается по критериям помехозащищённости и точности и
подтверждается результатами численного моделирования и натурного эксперимента.

Совмещённая постановка задачи геолокации. Задача оценки неизвестных пара-
метров источника сводится к решению нелинейной системы условных уравнений:

t = η (X,θ) + ε, (1)
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где η (X, θ) — N -мерный вектор вычисляемых времён пробега (теоретический годограф)
или функция регрессии; ε = (ε1, . . . , εN )> — вектор невязок; t = (t1, t2, . . . , tN ) — вектор

времён вступлений сейсмических волн; θ = (x, y, z, v, t)> — m-мерный вектор оцениваемых
параметров; X = (x1,x2, . . . ,xN ) — матрица координат датчиков (или точек излучения),
а N — число датчиков (или точек излучения).

Определяемыми параметрами выступают cкоростная характеристика среды v и вре-
мя в источнике tи, пространственные координаты источника — x, y, z. Иногда скорость в
среде является известной. При оценке параметров используют сведения о распределении
ошибок εi = ti(xi,θ)−η(xi,θ). В дальнейшем будем предполагать, что εi — взаимно неза-
висимые случайные величины, имеющие распределение с нулевым средним и заданными
дисперсиями:

Eεi = 0, Eεiεj = σ2
i δij , σi = σ(xi).

Здесь δij — символ Кронекера, i = 1, 2, . . . , N.
Когда возникают затруднения с заданием дисперсий, то можно принять их равными

и получить несмещённую оценку дисперсии наблюдения с единичным весом.
Исходные сейсмические колебания в Земле с учётом характеристик регистраторов

описываются в виде модели

yk(ti) = AkhkL[u(ti −∆tk) + nk(ti)]. (2)

Здесь Ak — амплитуда колебания на k-м датчике; hk — чувствительность датчика; L —
оператор фильтрации сигнала; u(ti − ∆tk) — полезный, априори неизвестный сигнал;
nk(t) — внешний шум с корреляционной функцией rk(τ).

Вследствие решения задачи (1) для топологии регистрирующей системы с набором

датчиков с линейной расстановкой возникают задачи обнаружения и интерпретации, свя-
занные с совместным определением по совокупности датчиков времён вступлений априори

неизвестных, но близких по форме волн (волновых форм) в пределах регистрирующего
профиля. Теория алгоритмов интерпретации в геофизике связана с необходимостью про-
слеживания корреляции волн неизвестной формы вдоль регистрирующего профиля [4].

В представленной работе предлагается и рассматривается апостериорный подход к

решению задачи по всем накопленным данным профильной регистрации. Его алгорит-
мическая реализация сопряжена с решением трудоёмких в вычислительном плане задач

дискретной оптимизации. Предлагается и исследуется иной малоизученный применитель-
но к геофизическому мониторингу подход, в рамках которого решение задачи находится в
едином процессе дискретной оптимизации без разбиения задачи на этапы. При этом воз-
можны две формы обнаружения: либо оценивание непосредственно времён прихода волн,
либо получение одновременно оценки времён прихода и формы волновых импульсов.

Особенность решения обеих задач связана с учётом вариаций времён вступления

волн между соседними датчиками, определяющих ошибки оценивания годографа, — ли-
нии вступления волн в зависимости от координат точек возбуждения и наблюдения. Такие
вариации определяются рядом факторов: погрешностью позиционирования автономных ре-
гистрирующих систем на линейном профиле по сигналам GPS, погрешностью временно́й
синхронизации по сигналам GPS каждой из автономных систем, вариациями времён про-
бега волн в цепи источник — приёмник. С учётом этого в дальнейшем по отношению к на-
бору регистрируемых последовательностей вводится понятие квазипериодических после-
довательностей, означающее, что временно́й интервал между двумя последовательными
импульсами варьируется в пределах заданных сверху и снизу констант. Соответственно,
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далее будут рассматриваться алгоритмы, которые предназначены для обработки после-
довательностей, изменяющих свои свойства квазипериодически и искажённых гауссовой
помехой [5].

При решении задач предлагается следующая модель анализируемых данных. Пусть
компоненты вектора X = (x0, . . . , xN−1) ∈ ReN образуют последовательность волновых

форм в виде, где

xn =
M∑
m=1

un−nm(m), n = 0, . . . , N − 1. (3)

ЗдесьM — число волновых форм в последовательности. Условие варьирования временно́го
интервала между импульсами (указанными выше) запишем в виде

q 6 Tmin 6 nm − nm−1 6 Tmax, m = 2, . . . ,M, (4)

где Tmin и Tmax — минимальный и максимальный интервалы между двумя последователь-
ными волновыми формами, задаваемые натуральными числами. Их выбор определяется с
учётом характера погрешностей, отмеченных выше.

Положим Um = (u0(m), . . . , uq−1(m)), m = 1, . . . ,M . Принимаем, что 0 < ‖Um‖2 <∞,
m = 1, . . . ,M . Введём w = (U1, . . . , UM ) и η = (n1, . . . , nM ). Согласно введённым обо-
значениям, вектор X зависит от пары наборов η и w, содержащих одинаковое число M
элементов, т. е. X = X(η, w). Пусть случайный вектор Y = (y0, . . . , yN−1) есть сумма двух
независимых векторов Y = X(η, w) + Ξ, где вектор шумов Ξ = (e0, . . . , eN−1) ∈ Φx,σ2I ,

σ2 <∞. Здесь через Φx,σ2I обозначено нормальное распределение с параметрами (0, σ2I).
С учётом этого задача обнаружения квазипериодических последовательностей волно-

вых форм состоит в том, чтобы по наблюдаемому векторуY найти набор η, в соответствии
с которым порождён ненаблюдаемый вектор X(η, w). В этой модели компоненты векторов
Y и X соответствуют наблюдаемому и ненаблюдаемому сигналам, а компоненты векто-
ра Ξ — помехе. Номера компонент векторов ассоциируются с равномерным дискретным
временем. Элементам набора (n1, . . . , nM ) сопоставляются моменты времени вступления
(начала) волновых форм η̂ = (n̂1, . . . , n̂N )>; q-мерный набор Um (m = 1, . . . ,M) соответ-
ствует волновой форме.

Для решения задач применяется принцип максимального правдоподобия. Помехо-
устойчивое максимально правдоподобное обнаружение заданного числа неизвестных вол-
новых форм моделируется следующей дискретной экстремальной задачей.

Задача 1. Дано: числовая последовательность Y = (y0, . . . , yN−1), натуральные числа
q,M , Tmin и Tmax. Найти: набор η = (n1, . . . , nM ) ∈ ΩM такой, что

F (n1, . . . , nM ) =
M∑
m=1

q−1∑
k=0

y2
nm+k → max . (5)

В случае, когда все волновые формы идентичны, но неизвестны, т. е. Um = U =
= (u0, . . . , uq−1) для каждого m = 1, . . . ,M , а их число M неизвестно, проблема обнаруже-
ния этих форм индуцирует следующую экстремальную задачу.

Задача 2. Дано: числовая последовательность Y = (y0, . . . , yN−1), вектор

U(u0, . . . , uq−1), натуральные числа Tmin и Tmax. Найти: набор η = (n1, . . . , nM ) ∈ ΩM

и его размерность такие, что

S(n1, . . . , nM ) =
M∑
m=1

q−1∑
k=0

uk(uk − 2yni+k)→ min . (6)
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Методы решения. Решение задач (5), (6) связано со случайным перебором, поэтому
они относятся к числу NP-трудных. Рассмотрен подход к их решению на основе динами-
ческого программирования для ухода от случайного перебора.

Обозначим G(ni) =

q−1∑
k=0

ũk(ũk − 2yni+k), где ũk = yn∗1+k, k = 0, . . . , q − 1, является

компонентой неизвестной волны U . Следовательно, задача (6) примет следующий вид на
множестве ΩM :

S̃1(n1, . . . , nM ) =
M∑
i=1

G(ni)→ min
ΩM

. (7)

Функционал (6) является сепарабельным и аддитивным, поэтому задачу (7) можно
решать методом динамического программирования и в соответствии с принципом опти-
мальности организовать многошаговый процесс минимизации [5]. Такой подход в данной
работе используется для решения задач (5), (6).

Для сокращения перебора изначально необходимо определить время вступления вол-
новой формы по первому каналу при M = 1 и после этого решать задачу совместного
определения времён приходов волн по всем каналам. Поскольку форма волнового импульса
априори неизвестна, то обнаружение его в шумах базируется на применении энергетиче-
ского критерия [6]:

U =
N∑
n=1

λn|Vn|2

2(λn +D)
> G0. (8)

Здесь Vn — образцы огибающей входного сигнала (1); D — спектральная плотность мощ-
ности внешнего шума; G0 — порог обнаружения, выбираемый по одному из статисти-
ческих критериев. Параметры λn ∼ 1/∆f по отношению к сигналу на выходе узкопо-
лосного фильтра с оператором L в (2) и полосой пропускания ∆f . Кроме того, долж-
но быть выполнено условие: ∆f T � 1 [6]. С учётом выполненных замечаний и реше-
ния задачи обнаружения (8) получаем оценку n̂1. По найденному значению n̂1 решени-
ем задачи 1 находится набор (yn̂1 , . . . , yn̂1+q−1). Далее, используя этот набор, решаем
задачу (2), положив U = (yn̂1 , . . . , yn̂1+q−1). Наконец, по найденному набору (n̂1, . . . , n̂M̂ )

вычисляем оценки компонент вектора Û. Оптимальные значения компонент искомого
набора Û = (û0, . . . , ûq−1), соответствующего волновой форме, находятся по формуле

ûk =
1

M̂

M̂∑
m=1

yn̂m+k, k = 0, . . . , q− 1, где nm, m = 1, . . . , M̂ , а M̂ — элементы оптимального

решения задачи (7).
Численное моделирование алгоритма поисковой оптимизации. Для проверки

работоспособности и исследования точности работы предложенного алгоритма выполне-
ны численные эксперименты с моделированием различных волновых форм. Задавались
образцы реальных волновых форм, одинаковых по форме и длительности и осложнённых
гауссовым шумом разного уровня, различные соотношения сигнал/шум. По сгенерирован-
ному набору (n1, . . . , nM ) случайных номеров формировалась последовательность компо-
нент вектора X. В соответствии с принятой моделью анализируемая последовательность
компонент вектора Y синтезировалась как сумма вектора X и гауссовского вектора Ξ с

параметрами распределения (0, σ2I). В качестве примера на рис. 1 приведены в графиче-
ском виде результаты совместного обнаружения и выделения волновых форм с помощью
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Рис. 1. Соотношение сигнал/шум, равное 1,25; Tmin = 1,3 с; Tmax = 2,2 с; q = 1 с;
N = 20 с; M = 11; δU (M) = 6 · 10−2: a — смоделированная последовательность

импульсов в шумах; b — последовательность импульсов после применения ал-
горитмов; c — заданная и вычисленная формы импульса

алгоритма решения задачи (2). На рис. 1 изображены: a — сгенерированная модельная за-
шумлённая последовательность; b — последовательность, найденная алгоритмом решения
задачи (2); c — результаты численного оценивания погрешностей выделения одинаковых

волновых форм в квазипериодической последовательности на фоне шума для случая отно-
шения сигнал/шум, равного 1,25.

Времена вступлений для всех выделенных импульсов по отношению к обеим последо-
вательностям проставлены на оси абцисс в начале каждого из импульсов. В серии числен-
ных экспериментов показано, что средняя абсолютная погрешность оценивания времени
вступления волновой формы составляет 0,047 с.

Для проверки качества алгоритма оценивания волновых форм использовалась ме-

ра среднеквадратического отклонения в виде δU (M) =
1

q

q−1∑
k=0

(uk − ûk)
2, где uk, ûk,

k = 0, . . . , q − 1, — заданные и вычисленные компоненты волновой формы U . Относи-
тельная среднеквадратическая погрешность оценивания волновой формы для данных

на рис. 1, c не превышает 6 %.
Эксперименты и результаты. Для оценивания эффективности алгоритмов и реа-

лизующих их программ в определении точности координат источника проведены числен-
ные и полевые эксперименты с применением пространственно распределённых калибро-
вочных взрывов с тротиловым эквивалентом 400–2600 г и регистрирующей системы в кре-
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Рис. 2. Схема расстановки: ◦— калибровочные взрывы; ∆ — регистрирующие
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Рис. 3. Пример сейсмограммы с сейсмической и акустической волнами

от небольшого взрыва на расстоянии 570 м

стообразной расстановке в каждой из линий семи сейсмических датчиков с шагом 34,5 м.
Схема расположения источников и регистрирующих датчиков представлена на рис. 2.

Пространственные характеристики расстановки привязаны к карте местности, а чис-
ловые — к значениям координат на карте в секундах. В крестообразной расстановке на
линиях 1, 2 используются семь сейсмических датчиков с шагом расстановки 34,5 м. Обе
линии образуют сейсмическую антенну. В качестве примера на рис. 3 приводится запись
сигнала (сейсмограммы) на одном из датчиков от поверхностного взрыва мощностью 200 г
в тротиловом эквиваленте на расстоянии 570 м. Особенность сейсмограммы состоит в том,
что она содержит первичную низкоамплитудную сейсмическую волну и высокоамплитуд-
ную приповерхностную акустическую волну. Точность нахождения разности времён про-
бега между обоими типами волн определяет точность оценки расстояния от источника до

приёмника.
С учётом этого и оценивания вектора времён вступлений волн в (1) в пределах сей-

смической антенны решается задача геолокации.
Численное моделирование. Целью моделирования является оценивание потенциаль-

ных погрешностей определения координат при заданных точностях нахождения времён

пробега волн до датчиков и рассчитанной из эксперимента скорости распространения сей-
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смических волн. Моделирование основывается на решении обратной задачи (1) методом
сингулярного (SVD) разложения [7–10]. Наибольшее распространение в настоящее время
получило синонимичное название метода — метод псевдообращения (или обобщённого об-
ращения). Создана вычислительная программа в средеMATLAB для реализации расчётов
на основе этого метода. Расчёты по описываемой программе состоят в следующем: вво-
дятся известные координаты 21 точки взрывов и мест расстановки датчиков, затем по
известной (определённой из эксперимента) скорости сейсмической волны рассчитываются
времена её пробега от точек взрыва до сейсмодатчиков. Далее на эти времена «набра-
сываются» случайные погрешности в пределах от −0,5 % до +0,5 % времени пробега и

уже эти времена задаются в программе в качестве времён вступлений сейсмических волн

от взрывов на сейсмодатчиках. Программа рассчитывает для каждого взрыва следую-
щие выходные данные: расстояние до источника — в метрах, азимутальное направление
на источник — в градусах, невязку (погрешность определения координат расстояния) —
в метрах. Как следует из результатов вычислений, погрешности определения расстояний
при заданных погрешностях на времена вступления волн не более ±0,5 % не превышают

1,6 % по дальности и 2 % по азимуту. Результаты численного моделирования иллюстриру-
ют потенциальные возможности точности геолокации. В реальной ситуации повышенные
внешние шумы могут ухудшать точностные характеристики.
Полевые эксперименты и результаты. Рассмотренные выше результаты численно-

го эксперимента являются дополнением к полевому эксперименту, в котором координаты
источников оценивались на основе измерения времён вступлений сейсмических и акустиче-
ских волн. Вектор времён вступлений волн t = (t1, t2, . . . , tN ) в (1) от каждого из взрывов
на совокупности из Nдатчиков определяется в виде решения рассмотренных задач (5)–(7).
При этом предварительно применяется трансформация параллельных записей в последо-
вательные с фиксированным интервалом между ними, который впоследствии учитывал-
ся при расчёте истинных времён вступлений волн. По измеренным временам t методом
псевдообращения определяются координаты источников в полярной системе координат

путём решения (1). В таблице приведены результаты расчётов, сопоставление их с соот-
ветствующими данными из цифровой карты местности по GPS, погрешности оценивания.
Сравнение экспериментально полученных значений погрешностей (см. таблицу) с данны-
ми численного моделирования показывает, что расхождение между ними не хуже 1 %.
В первую очередь, это определяется точностью решения задачи (5).

Таб л иц а

Погрешности между расчётными и полученными по GPS координатами

Номер

источника

Дальность, м Азимут, град

Расчётная Данные GPS Погрешность Расчётный Данные GPS Погрешность

1 499,48 512,37 12,92 256,92 253,49 –3,43
2 569,65 576,28 6,63 264,35 260,16 –4,19
3 559,34 570,52 11,18 262,79 261,60 –1,19
4 563,39 570,70 7,3 262,79 263,09 0,3
5 509,71 519,66 9,95 269,00 269,30 0,3
6 509,20 521,51 12,31 270,18 270,48 0,3
7 520,02 533,53 13,5 282,59 281,20 –1,39
8 526,79 538,05 11,2 283,57 283,25 –0,32
9 575,23 586,68 11,45 295,16 295,16 0
10 581,15 593,02 11,8 296,80 296,27 –2
11 709,82 710,77 0,95 300,77 300,02 –0,75
12 731,04 729,54 –1,5 300,77 300,93 0,16
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Рис. 4. Результаты вычисления КНД: a — для линий расстановки 2 ; b — для

линий расстановки 1, 2

Кроме рассмотрения полученных численных оценок местоположения источника, пред-
ставляет интерес оценка функции направленности на источник, зависящей от временно́й
задержки прихода волн ∆t между двумя соседними датчиками, а также длины базы рас-
становки датчиков с шагом расстановки ∆r. Такая функция описывает диаграмму на-
правленности на источник:

Eсум =
∑
n

(f1(tn) + f2(tn + ∆t) + . . .+ fk(tn + ∆t(k − 1)))2.

Её нормированное значение характеризует коэффициент направленного дей-
ствия (КНД): КНД = Eсум/Emax. Частные результаты вычисления КНД по данным ре-
гистрации на линии 2 и совместно линий 1, 2 (см. рис. 2) представлены на рис. 4, a, b
соответственно. Результаты получены для исходного азимутального значения на источ-
ник по данным GPS, равного 267◦. Вычисленные азимутальные значения, определяемые в
максимумах КНД, составляют 267,74 и 266,00◦ соответственно. Как видно из рис. 2 и 4,
абсолютная погрешность не превышает 1◦.

Заключение. Предложен новый численный подход к решению задач геолокации мощ-
ных импульсных источников сейсмических и акустических волн на основе совмещения ме-
тодов решения обратных задач и задачи поисковой оптимизации при определении времён

вступлений волн в целом на группе пространственно распределённых датчиков. Проведено
численное моделирование, и выполнены экспериментальные исследования предлагаемых
методов для оценивания точности пространственной локализации источников на примере

использования калибровочных, пространственно распределённых взрывов. Так, погреш-
ности определения местоположения пространственно распределённых источников на пло-
щади размером 400 × 600 м с помощью X-образной расстановки сейсмической группы
размером 200 × 200 м при расстоянии от источника до датчика 1000 м не превышают
2,5 % по дальности и 1,6 % по азимуту.

Финансирование. Исследования выполнены в рамках государственного задания Ин-
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