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Исследовано влияние постэкспозиционной термической обработки на изменения спектраль-
ных и дифракционных характеристик отражательных голограмм, полученных на гологра-
фических фотополимерных материалах разной толщины (8–10 и 20–25 мкм) в двух случа-
ях постобработки: непосредственно по завершении их записи и после ультрафиолетового
задубливания фотополимера. Выявлено, что длительная термообработка при 50 ◦С неза-
дубленных голограмм толщиной 10 мкм приводит к увеличению амплитуды модуляции

коэффициента преломления с 0,014 до 0,022. Для незадубленных голограмм выявлены су-
щественное смещение спектрального отклика в коротковолновую область и уширение его

контура вследствие значительной усадки фотополимера и искажений пространственной

структуры голографической решётки. После процедуры задубливания термическая обра-
ботка не вызывает заметных изменений спектральных и дифракционных характеристик

голограмм независимо от их толщины. Установлено, что нагрев/охлаждение в диапазоне
50–5 ◦С задубленных голограмм толщиной 25 мкм приводит к контролируемому в режи-
ме реального времени батохромному/гипсохромному сдвигу спектрального отклика голо-
грамм, в то время как для голограмм толщиной 8 мкм такие сдвиги отсутствуют, что
создаёт предпосылки для формирования нечувствительных к изменениям температуры

атермолизованных голографических оптических элементов.
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Введение. Голографические фотополимерные материалы (ГФПМ) представляют со-
бой класс оптических регистрирующих сред, привлекающих научный и промышленный
интерес из-за своих уникальных функциональных свойств (широкого диапазона спектраль-
ной чувствительности, большого фотоиндуцированного изменения показателя преломле-
ния, высокого пространственного разрешения и др.) [1, 2]. В настоящее время эти мате-
риалы успешно применяются при изготовлении изобразительных и защитных голограмм,
элементов дисплеев дополненной реальности, сенсоров, спектральных фильтров в астро-
номии и т. п. [3–11].

Эффективность формирования голограмм в ГФПМ определяется двумя основными

факторами: диффузией мономера и глубиной протекания фотополимеризации. При реги-
страции голограммы в объёме регистрирующей среды в засвеченных (светлых) областях
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интерференционной картины запускается реакция фотополимеризации, что приводит к
градиенту концентрации мономера, который затем вызывает эффект диффузии мономе-
ра из тёмной области в светлую, в конечном результате пространственное распределение
показателя преломления ГФПМ оказывается модулированным, согласно полосам интерфе-
ренционной картины [12]. В некоторых случаях большая толщина фотополимеров подра-
зумевает также дополнительный градиент мономера по глубине [13].

Из литературных данных известно, что постэкспозиционная термообработка может
оказывать различное влияние на свойства голограмм в зависимости от типа ГФПМ. Так,
в [14] авторы наблюдали диффузионное усиление голограмм, записанных в полимерной
композиции на основе ПММА и бензофенона, и рост значений дифракционной эффектив-
ности (ДЭ) с 20 до 99 %. В [15–18] показано увеличение степени конверсии двойных связей
мономера в фотополимерах и, как следствие, повышение ДЭ голограмм.

В [19] исследовано влияние постэкспозиционной термообработки на свойства фото-
полимерных голограмм с защитной плёнкой и без неё. Установлено, что голограммы с

нанесённой защитной лавсановой плёнкой сохраняют высокую дифракционную эффектив-
ность ≈90 % и не приобретают дополнительной усадки при термической обработке в те-
чение нескольких суток при температуре 80–90 ◦C. Для голограмм без защитной плёнки
при нагревании в диапазоне температур 40–110 ◦C замечена эффективная усадка до 17 %
без ухудшения дифракционной эффективности.

Изменение температуры может влиять также на спектральный отклик записанной

голограммы [20], что находит применение в разработке голографических сенсоров [20–23].
Однако чувствительность голограмм к температурным изменениям может ограничить их

использование в таких приложениях, как оптическая память, дисплеи дополненной реаль-
ности, спектральные фильтры и т. д. [24]. В работе [25] показано, что в режиме реально-
го времени при увеличении температуры с 23 до 171 ◦C происходит батохромный сдвиг

максимума спектрального отклика отражательной голограммы в фотополимерах Bayfolr

HX200 с 565 до 605 нм. Помимо этого, в работе [26] при двухнедельном воздействии солнеч-
ного освещения авторы наблюдали значительное ухудшение эффективности дифракции и

пропускания, сдвиг угла Брэгга, что делает непригодным данный материал для создания
атермолизованных оптических элементов.

Голограммы, сформированные на фотополимерах HRF-600 фирмы DuPont (США),
показали отличную устойчивость к термическим изменениям в диапазоне 55–125 ◦C [27].
Данные голограммы после записи были предварительно задублены с помощью ультра-
фиолетового (УФ) облучения и термообработки при 120 ◦C на протяжении 2 ч. Такое
задубливание приводит к обесцвечиванию остаточного красителя, более глубокой степени
полимеризации мономера, а также диффузионному усилению сформированной голограм-
мы [28].

Характеристики ГФПМ, разработанных в Новосибирском институте органической хи-
мии им. Н. Н. Ворожцова (НИОХ СО РАН) для записи отражательных голограмм, та-
кие как значения фоточувствительности и дифракционной эффективности, сопоставимы
с известными фотополимерами компаний Covestro (Германия) и DuPont, однако влияние
различных вариантов постэкспозиционной термообработки на свойства голограмм мало

изучено.
Цель данной работы — выявление изменений спектральных и дифракционных харак-

теристик фотополимерных отражательных голограмм в двух случаях термической по-
стобработки: 1) непосредственно по завершении их записи; 2) после задубливания путём
УФ-засветки и кратковременного нагрева при температуре 100 ◦C.

Эксперименты.
Приготовление экспериментальных образцов ГФПМ. В экспериментах использо-

ван ГФПМ на основе акриламидного мономера и поливинилацетата, разработанный
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в НИОХ СО РАН [29]. Исследованный нами ГФПМ обладает свойством постэкспозици-
онного усиления сформированных голограмм за счёт диффузии мономера из необлучён-
ных областей и, как следствие, темновой фотополимеризации. Методика приготовления
фотополимерной композиции и ГФПМ различной толщины с оптимальными параметрами

ранее подробно описана в [19]. На основе данной композиции получены экспериментальные
образцы фотополимера с различной физической толщиной d0 (8–10 и 20–25 мкм).

До экспонирования на фотополимерный слой накатывали защитную полиэтилентереф-
талатную (ПЭТ) плёнку, которая предотвращает доступ кислорода к фоточувствительно-
му слою, а также служит для защиты ГФПМ от механических повреждений и воздействий

окружающей среды.
Толщины голограмм измерены с помощью компьютеризированного интерферометра

МИИ-4 (ЗАО «Дифракция», Россия).
Запись и характеризация отражательных голограмм. Отражательные голограммы

записывали с использованием лазера CNI Laser, MSL-FN-639 с длиной волны излучения
λ0 = 639 нм, мощностью 200 мВт по схеме с двумя контрнаправленными пучками, угол
схождения которых в среде ГФПМ составлял 2θ = 117◦, а соотношение интенсивностей
в плоскости записи 1 : 1. Обеспечивалось равномерное распределение интенсивности за-
светки по площади пучков (за счёт расширения и коллимирования исходного лазерного
пучка с помощью микрообъектива 40× и линзы с фокусным расстоянием 200 мм, а также
ограничения площади засветки ирисовой диафрагмой диаметром 10 мм).

Из литературных данных [30, 31] известно, что величина дифракционной эффективно-
сти фотополимерных голограмм зависит и от энергии, и от интенсивности засветки. Для
использованных нами материалов экспериментально установленные оптимальные (по кри-
терию максимума результирующей ДЭ) значения этих параметров составили 20 мДж/см2

и 2 мВт/см2 соответственно.
Характеризация полученных голограмм включала в себя измерение спектра пропус-

кания отражательной голограммы, оценку величин ДЭ и эффективной толщины dэфф,
амплитуды модуляции показателя преломления n1, степени усадки толщины голограм-
мы ∆S. Методы и средства такой характеризации ранее описаны в работах [27, 31, 32], в
частности, пиковые значения ДЭ оценивались на основе выражения

ηr = (1 − Tr/T0) · 100 %, (1)

где Tr и T0 — пропускание голограммы на длине волны максимума контура спектраль-
ного отклика и вблизи его основания соответственно; эффективную толщину голограмм
рассчитывали с помощью формулы [33]:

dэфф = d0 exp (1 −D0/2), (2)

а степень усадки толщины голограммы вычисляли следующим образом:

∆S =
λрасч − λэкс

λрасч
· 100 %, (3)

где d0 — физическая толщина фотополимерного слоя, D0 — его оптическая плотность,
λрасч — расчётное значение длины волны максимума спектрального отклика отражатель-
ной голограммы в отсутствие усадки, а λэкс — экспериментальное значение этого отклика

на разных этапах постобработки, в том числе и сразу после записи голограммы. Значение
λрасч определяли как

λрасч = λ0/ cos (90◦ − θ) = 639/ cos (31,5◦) = 749 нм. (4)
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Оценки значений параметров dэфф и амплитуды модуляции показателя преломле-
ния n1 проводили путём сравнения экспериментальных и расчётных данных спектров

пропускания отражательных голограмм. Расчёты выполнялись по известным формулам
Когельника [34] в предположении, что голограммы являются объёмными, сугубо фазовыми
с однородным распределением картины модуляции показателя по толщине голограммы.

Значения dэфф показывают, что вследствие затухания света по мере его проникновения
в глубину регистрирующей среды запись голограммы реально происходит на толщине

меньшей, чем физическая толщина ГФПМ.
Экспериментально установлено, что для незадубленных голограмм толщиной

20–25 мкм термическая постобработка приводит к искажениям формы контура спектраль-
ного отклика, его уширению, несимметричности. В этом случае вместо формул Когель-
ника применялся аппарат матриц передачи многослойных неоднородных структур [35].
Для сопоставления экспериментальных данных с расчётными параметрами использова-
ли модели с переменными значениями периода решётки отражательной голограммы из-за
неоднородной усадки и с неоднородным, экспоненциально затухающим по глубине голо-
граммы, пространственным распределением модуляции показателя преломления.
Термическая и УФ-обработка голограмм. Голограммы подвергались термической об-

работке при 50 ◦C с помощью нагревательного столика ТП 1-10 (ТЕРМОПРО, Россия) в
двух вариантах: 1) непосредственно по завершении их записи; 2) после задубливания путём
одновременного УФ-облучения на расстоянии 10 см от образца и нагрева при температуре
∼100 ◦C на протяжении 1 мин.

Изменение спектров поглощения задубленных голограмм в диапазоне температур

(5–50 ◦C) в режиме реального времени получено на спектрофотометре Cary 5000 с по-
мощью термостатированной кюветы (Varian, США).

Для повышения достоверности эксперимента проводилось не менее пяти циклов испы-
таний, включающих запись голограмм, их постобработку и измерение параметров.

Результаты и обсуждения. Ниже описаны результаты измерений и анализа спек-
тральных и дифракционных характеристик исследованных нами голограмм.
Термические изменения характеристик незадубленных голограмм. Свойства тонких

незадубленных голограмм толщиной 8–10 мкм. На рис. 1 представлены графики изменения
спектрального отклика голограммы с начальной физической толщиной слоя 10 мкм. Кри-
вые 1–4 соответствуют моментам непосредственно после окончания записи, после 30 с,
спустя 10 мин и после длительного нагрева (при 50 ◦С). Видно, что вследствие усадки
ГФПМ, происходящей в процессе записи голограммы, максимумы контуров спектральных
откликов смещаются в коротковолновую область относительно расчётного значения λрасч
в среднем на 5 нм, например, для кривой 3. Глубина контуров увеличивается, их форма
сходна с формой контуров, рассчитанных по формулам Когельника для однородных голо-
грамм (кривая 1расч на рис. 2, a), что позволяет оценить эффективную толщину голограмм
dэфф и амплитуду модуляции показателя преломления n1.

Так, для кривой 1расч значения искомых параметров составили dэфф = 8,5 мкм,
n1 = 0,014, соответствующая им ДЭ равна 22 %.

С увеличением времени нагрева глубина контура спектрального отклика быстро по-
вышается, соответственно, возрастает ДЭ, которая через 10 мин достигает 43 %. Пост-
экспозиционная термообработка приводит к дополнительной сшивке остаточного непроре-
агировавшего мономера, из-за чего происходит увеличение n1 [36].

Далее спустя 18 ч нагрева рост ДЭ прекращается, происходят смещение и уширение
контура спектрального отклика (кривая 4 на рис. 1). В результате, согласно кривой 4расч
на рис. 2, b, расчётные параметры составили: n1 = 0,022, ∆S = 3,2 %.
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Рис. 1. Графики спектров пропускания голограммы толщиной 10 мкм при раз-
личном времени термообработки при 50 ◦C (кривая 1 — 0 мин, 2 — 5 мин, 3 —

10 мин, 4 — 18 ч)
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Рис. 2. Экспериментальные (кривые 1, 4 ) и расчётные (кривые 1расч, 4расч)
графики спектров пропускания отражательных голограмм толщиной 10 мкм:

a — после записи; b — после 18-часовой посттермообработки при 50 ◦C

Свойства незадубленных голограмм толщиной 20–25 мкм. На рис. 3 представлены
графики, иллюстрирующие изменение спектрального отклика незадубленной голограммы
с физической толщиной слоя 25 мкм после различного периода постобработки.

Путём сопоставления экспериментальных данных (кривая 1 на рис. 4, a) с расчётными
значениями (кривая 1 расч на рис. 4, a) установлено, что непосредственно после записи
эта голограмма имеет эффективную толщину dэфф = 20 мкм, n1 = 0,0085 и значение
ДЭ = 40 %. Характеристики сформированных голограмм приведены в табл. 1.

Далее проводили нагрев голограммы при фиксированной температуре и периодиче-
ские измерения спектров пропускания (кривые 2–4 на рис. 1). Из полученных данных
видно, что по мере увеличения длительности нагрева происходят повышение ДЭ, смеще-
ние спектрального отклика в коротковолновую область, изменения формы и ширины его
контура. После 30 мин нагрева за счёт усиления голограмм при темновой полимериза-
ции [37] ДЭ возрастает до 90 % (кривая 4 на рис. 3).
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Рис. 3. Изменение спектрального отклика незадубленной голограммы толщиной слоя
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Рис. 4. Графики экспериментальных и расчётных спектров пропускания неза-
дубленной голограммы толщиной 25 мкм: a — сразу после записи (кривые 1

и 1расч); b — после 18 ч нагрева при 50 ◦C (кривые 5 и 5расч)

Таб л иц а 1

Характеристики голограмм толщиной 25 мкм,
полученных без процедуры задубливания

Параметр Непосредственно

после записи

Постобработка

на протяжении 30 мин
Постобработка

на протяжении 18 ч

dэфф, мкм 20 12 12 (усреднённое значение)
n1 0,0085 0,017 0,018 (усреднённое значение)

Пиковая ДЭ, % 40 90 85
Интегральная ДЭ, % — 17,1 26,8
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Дальнейшая термообработка на протяжении 18 ч приводит к усадке ∆S = 3,2 % и

значительному уширению контура спектрального отклика с 11 до 32 нм (на половинном
значении провала). Кроме того, наблюдается несимметричность формы этого контура, что
свидетельствует о неоднородности пространственной структуры решётки, включающей
переменные величины модуляции коэффициента преломления n1 и периода решётки по
глубине голограммы, которую можно интерпретировать как совокупность наложенных

голограмм с различающимися значениями этих параметров. В связи с этим в табл. 1
приведены значения n1 и dэфф, усреднённые по такой совокупности голограмм.

Согласно формуле (1), пиковое значение дифракционной эффективности составляет
85 %, однако, в данном случае уместно оценивать значение интегральной ДЭ, учиты-
вающей отражение света в диапазоне всего контура спектрального отклика. Известно,
что интегральную ДЭ можно определить как величину, пропорциональную произведению
среднего значения ДЭ по диапазону контура конкретного спектрального отклика на ши-
рину этого контура с коэффициентом 1/100 [38]. Значения интегральной ДЭ приведены в
табл. 1. Для кривой 4 (см. рис. 3) эта характеристика составляет 17,1 %, а для кривой 5
(см. рис. 4) — 26,8 %. Таким образом, после указанного длительного нагрева интегральная
ДЭ возросла в 1,57 раза.
Влияние термообработки на свойства задубленных голограмм. Свойства задублен-

ных голограмм толщиной 20–25 мкм. На рис. 5 представлены графики изменения спек-
трального отклика голограммы с физической толщиной слоя 25 мкм. Кривые 1–3 соот-
ветствуют моментам непосредственно после окончания записи, процедуры задубливания и
длительной посттермообработки на протяжении 48 ч. Видно, что глубина контуров спек-
тральных откликов после процедуры задубливания увеличивается, но их форма не иска-
жена асимметрией и описывается формой контуров однородных голограмм, рассчитанных
по формулам Когельника (рис. 6, a). Расчётные значения эффективной толщины dэфф и
амплитуды модуляции показателя преломления n1 после записи и посттермообработки
сформированных голограмм приведены в табл. 2.

Путём сопоставления экспериментальных данных с расчётными значениями

(см. рис. 6) установлено, что непосредственно после записи голограмма имеет эффектив-
ную толщину dэфф = 16,7 мкм, n1 = 0,01 и значение ДЭ, равное 40 %. После процеду-
ры задубливания характеристики голограмм изменились, произошли гипсохромный сдвиг
максимума спектрального отклика голограммы с 740 до 737 нм и увеличение значений ДЭ
с 40 до 65 %. Данные изменения связаны с повышением степени конверсии двойных свя-
зей акриламидного мономера и уплотнением полимерной сетки [37]. Увеличение глубины
полимеризации мономера при задубливании приводит к повышению n1 с 0,01 до 0,016,
увеличению усадки ГФПМ ∆S с 1,32 до 1,6 % и уменьшению расчётного значения dэфф
с 16,7 до 16,3 мкм.

В результате продолжительной 48-часовой постобработки наблюдается лишь неболь-
шое увеличение значения усадки до ∆S = 1,9 %, что согласуется с ранее полученными
данными, которые показали, что задубленные голограммы с нанесённой защитной плёнкой
устойчивы к термической обработке вплоть до 100 ◦C [19].

Таким образом, задубливание голограмм является эффективным способом достижения
стабильности их дифракционных и спектральных характеристик, что важно на практике.
Изменение спектральных свойств задубленных голограмм в режиме реального време-

ни. При изменении условий (температуры, влажности и т. д.) окружающей среды наблю-
даются изменения показателя преломления и толщины голографического слоя, которые
приводят к спектральным сдвигам сформированных голограмм в режиме реального време-
ни. Например, при повышении температуры происходит увеличение физической толщины
материала и периода записанной решётки, что в итоге приводит к батохромному сдвигу
максимума спектрального отклика отражательной голограммы. Данный эффект находит
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Рис. 5. Спектры отражения записанной голограммы (кривая 1 ) после

процедуры задубливания на протяжении 2 мин (кривая 2 ) и дальнейшей

термической обработки при 50 ◦C на протяжении 48 ч (кривая 3 )
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Рис. 6. Экспериментальные (кривые 1, 2 ) и расчётные (кривые 1расч, 2расч) спек-
тральные отклики голограмм после записи (a) и процедуры задубливания (b)

Таб л иц а 2

Характеристики голограмм, полученных при процедуре задубливания

Параметр После

записи

После

задубливания

Постобработка

на протяжении 48 ч

dэфф, мкм 16,7 16,3 16
n1 0,01 0,016 0,017

Пиковая ДЭ, % 40 65 65
Усадка ∆S, % 1,32 1,6 1,9
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Рис. 7. Изменение спектральных откликов задубленных голограмм в диапазоне
5–50 ◦C: a — толщина слоя ГФПМ 25 мкм (кривая 1 — 50, 2 — 25, 3 — 5 ◦C);

b — толщина слоя ГФПМ 8 мкм

своё применение в датчиках температуры [23]. Однако актуальной является разработка
атермолизованных голографических оптических элементов (ГОЭ), не испытывающих из-
менений свойств при нагреве [39]. В связи с этим интерес представляют исследования

изменений спектральных откликов задубленных отражательных голограмм в режиме ре-
ального времени (рис. 7).

Пятикратное повторение процедуры нагрев/охлаждение задубленной голограммы,
сформированной в ГФПМ толщиной 25 мкм, с 50 до 5 ◦C приводит к батохромно-
му/гипсохромному обратимому сдвигу в режиме реального времени с 737 до 745 нм. Ре-
зультаты работы могут быть полезны на практике при создании защитных голограмм или

датчиков температуры [38, 39]. В то же время для голограмм, сформированных в ГФПМ
толщиной 8 мкм, сдвиги спектрального отклика отсутствуют. Можно предположить, что
при уменьшении толщины ГФПМ значительное противодействие расширению/сжатию
материала оказывают силы когезии между ГФПМ и подложкой. Наблюдаемая стабили-
зация характеристик фотополимерной голограммы при её толщине менее 10 мкм даёт
возможность получения тонких атермолизованных ГОЭ.

Заключение. Исследовано влияние постэкспозиционной термической обработки на
изменения спектральных и дифракционных характеристик фотополимерных отражатель-
ных голограмм с различной исходной толщиной 8–10 и 20–25 мкм.

Постобработка на протяжении 30 мин незадубленных голограмм толщиной 10 и

25 мкм увеличивает амплитуду модуляции коэффициента преломления с 0,014 до 0,022, а
для тонких голограмм — с 0,0085 до 0,017. Длительная 18-часовая термообработка неза-
дубленных голограмм с толщиной слоя 25 мкм приводит к значительной усадке фото-
полимера ∆S = 3,2 % и, как следствие, к неоднородности пространственной структуры
решётки, смещению спектрального отклика в коротковолновую область, изменению фор-
мы и ширины его контура с 11 до 32 нм, при этом наблюдается рост интегральной ДЭ с
17,1 до 26,8 %.

Показано, что длительная термообработка задубленных голограмм не приводит к из-
менению их дифракционных и спектральных характеристик. Наиболее вероятно, что про-
цедура задубливания способствует формированию жёсткой полимерной сетки ГФПМ, ко-
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торая препятствует диффузии макромолекул и, как следствие, сохраняет пространствен-
ную однородность первоначально сформированной голографической решётки.

Выявлено, что нагрев/охлаждение голограмм с толщиной слоя 25 мкм в диапа-
зоне 50–5 ◦C приводит к контролируемому в режиме реального времени батохромно-
му/гипсохромному сдвигу спектрального отклика голограмм в диапазоне 737–754 нм, в
то время как для голограмм толщиной 8 мкм такие сдвиги отсутствуют.
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