
2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

978-1-6654-1498-2/21/$31.00 ©2021 IEEE

Developing Reflex IDE Kernel with Xtext
Framework

Alena Bastrykina
Institute of Automation and

Electrometry SB RAS
Novosibirsk, Russia

Vladimir Zyubin
Institute of Automation and

Electrometry SB RAS
Novosibirsk, Russia

Andrey Rozov
Institute of Automation and

Electrometry SB RAS

Novosibirsk, Russia

Abstract—In this paper, we describe the technology of the

process-oriented language Reflex IDE kernel development. The

Reflex language, which is being maintained at the Institute of

Automation and Electrometry, is a language for cyber-physical

systems software specification. In the paper, we assume that

the cyber-physical system is a computational core that

interacts with the physical world. In the case of Reflex, the

computation platform is an industrial PC. Reflex IDE (RIDE)

includes a language-based editor, syntax and semantics

analyzers as well as an abstract syntax tree (AST) generator,

and a class library for working with the generated AST. In this

work, we explain our motivation for the research, formulate

the requirements for the development, and present the RIDE

architecture. We describe the RIDE development process using

Eclipse/Xtext tools and its user interface. We also provide an

example of extending the Reflex IDE kernel with a code

generator for the AVR platform. In the conclusion, we discuss

the possibility of using the obtained result to create a web-

version of RIDE.

Keywords—process-oriented programming, Reflex, Xtext,

parser, translator, DSL.

I. INTRODUCTION

The use of general-purpose languages for the
implementation of cyber-physical systems control
algorithms leads to an increase in the complexity of the
software architecture and makes it difficult to develop,
debug and maintain such systems.

The process-oriented language Reflex, developed at the
Institute of Automation and Electrometry, has been
successfully used in multiple industrial applications and
demonstrated promising qualities, producing easily
readable, maintainable code and overall robust and
dependable software [1].

The existing toolkit for the Reflex language was created
“manually”, without the use of automated DSL development
tools. The technologies that were used for developing each
tool are heterogeneous, thus, the toolkit is difficult to
integrate into a single development environment, and it is
hard to support. Therefore, the acute task is to refactor the
existing tools in order to create an integrated development
environment for the Reflex language. The IDE development
should be based on modern technologies for creating DSL
tools. Modern trends in the field of web services and their
advantages [2] also should be taken into account when

formulating the requirements for the IDE.

The article structure is the following. In the second
section, we state the requirements for the development. In
the third section, we describe the RIDE architecture and the
DSL tools we have chosen to create the IDE. The fourth
section depicts the language-based editor and parser
development process using the Eclipse/Xtext tool. The fifth
section describes the semantic checks’ implementation
using standard Xtext methods. In the sixth section, we
describe the IDE extension process and provide an example
of extending the Reflex IDE kernel with a code generator.
Finally, we summarize the results and consider that the
developed Reflex language toolkit can be ported into a web-
IDE platform.

II. REQUIREMENTS FOR THE REFLEX IDE

The requirements were based on the following:

1. Text format for representing DSL source codes is
preferred since it allows to view and edit source codes in all
the standard text editing programs.

2. Parser-generation method simplifies language tools
maintenance, particularly by decreasing an effort for
changing or expanding the language syntax.

3. The Reflex project itself is a research project. There are
already several tools for processing Reflex programs that
have been developed as a result of the research, e. g. a
dynamic code verification system, a C-code generator for
PC-based control, etc. Moreover, some language tools are in
progress (static code verification tools, debugging toolkit).
We want to have the possibility to integrate all these tools
into one single IDE.

4. Modern language tools tend to have a language-based
editor and provide features like autocompletion, code
navigation, static code analysis, syntax and semantics errors
reporting [3].

5. The increasing popularity of web-IDEs. A web-IDE
lacks deployment on the user’s PC, simplifying the process
of getting started with the new language. This stimulates
new users to learn and use the language.

As a result of the analysis, the following requirements
were formulated for the IDE project:

(1) text format should be used for representing Reflex
program source codes;

This work was supported by the Russian Ministry of Education and
Science, project no. AAAA-A19-119120290056-0.

2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

(2) the development should be based on an automated
parser generation method;

(3) the IDE should be extensible with problem-oriented
modules;

(4) the IDE kernel should include an editor, which
provides syntax highlighting, interactive diagnostics based
on syntax and semantics analysis;

(5) chosen DSL technologies should allow developers to
port the IDE to different platforms in order to use it in both
desktop and web modes.

III. SYSTEM ARCHITECTURE AND DEVELOPMENT

TECHNOLOGIES

The developed IDE architecture and workflow is shown
in Fig. 1. RIDE kernel consists of the following
components:

1. Language-based editor.

2. Parser, which is automatically generated from the
description of the Reflex grammar. Parser is triggered
each time when the user changes program code in the
editor. Parser performs syntax analysis and produces an
AST.

3. Semantic analysis components, which perform a set
of semantic checks on the generated AST.

4. Delegating code generator, which controls the
operation of problem-oriented extension modules. The
delegating code generator is fired each time the user
saves program source code in the editor. It takes an AST
as input and redirects it to the loaded extension modules.

5. Problem-oriented IDE extension modules, which take
the program AST as input and produce the set of particular
artifacts (e.g. generated code).

Fig. 1. Reflex IDE architecture

The following tools for domain-specific languages
development were analyzed:

• GNU Bison [4] and ANTLR4 [5] parser-generators;

• JetBrains MPS [6] and Xtext [7] DSL development
frameworks.

The DSL development framework usage was preferred,
hence to reduced effort on building complex IDE
architecture and automatic source code editor generation.

Based on the analysis results, it was decided to choose
Eclipse/Xtext technologies to build a RIDE kernel.

Xtext is a powerful DSL workbench based on the
Eclipse Platform. The main advantages of the framework for
building RIDE kernel are:

1. Automatic parser, editor and generation based on
DSL definition.

2. API’s for defining different types of semantic checks
for DSL.

3. Integration with the Xtend language, a JVM language,
which translates to Java [8]. Xtend expands Java with
useful ‘syntactic sugar’, making it more flexible and
convenient to write a code generator for the DSL.

4. Integration with the Language Server Protocol (LSP).
Thus, although Xtext uses Eclipse as a target platform, a
part of Reflex language artifacts generated by Xtext can
be ported into various IDE’s and text editors, including
Web-IDEs, which support LSP [9]. The full list of such
tools is introduced in [10], the most popular are: IntelliJ,
VSCode, Sublime.

JetBrains MPS was considered almost as powerful as
Xtext, but unfortunately, it offers only a projectional way of
editing programs. This means that the program semantic
mode, represented by the AST, is being edited directly from
the projectional editor. Therefore, the format used by MPS
to represent DSL source code is not textual. Moreover, there
is no technology for migrating MPS-based language projects
into other IDE platforms, including web-IDE engines. All
these disadvantages violate the requirements for the Reflex
IDE.

IV. LANGUAGE-BASED EDITOR AND PARSER

Xtext offers a special language, called the Grammar
Language, to describe languages with LL-grammars. The
Grammar Language is based on the Extended Backus-Naur
Form (EBNF) [11, 12] and provides a possibility to describe
semantic relations in an abstract syntax tree (AST).

Xtext relies on Eclipse Modeling Framework (EMF)
[13] to build Abstract Syntax Trees defined using the
Grammar Language. Based on the grammar, Xtext creates
an EMF metamodel description for the defined language. In
these terms, the Grammar Language rules are used as a
definition for the EMF language model entities. The
grammar rules describe entities names, properties, and also
references between the entities. The parser generated by
Xtext creates an abstract syntax tree as an EMF model —
which itself is an instance of the described EMF metamodel.

The grammar of the Reflex language was defined using
the Grammar Language. Given the definition of the Reflex
grammar, the Xtext workbench automatically generated the
Eclipse-based IDE UI, which includes the Reflex language
editor, a parser, and a Java class library for working with
AST.

Fig. 2. An example of Reflex language syntax violation report

2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

Syntax errors, which are detected as a result of the
parser's work are interactively displayed in the IDE, as
shown in Fig. 2. Words containing syntax errors are
underlined in the editor, the line containing syntax violation
becomes annotated with error marker, and also an error
message with the full location information appears in the
Problems IDE view.

V. SEMANTIC CHECKS IMPLEMENTATION

The implementation of the semantic analysis
components was based on the customization of the stubs,
automatically generated by Xtext. Xtext offers two methods
of specifying semantic checks for the developed DSL: a
technology for the mechanisms for the specification of
semantic rules (validation) and a technology for the
specification of contextual links between program
identifiers and AST objects (linking and scoping) [14].

A semantic analysis of the reachability of processes and
states, the use of variables and other rules typical for the
Reflex language was provided through the validation
mechanism. The work of validation mechanism was
achieved by customizing an AbstractDeclarativeValidator
Java class stub instance with a set of methods, which
perform semantic checks on the particular types of entities
in the AST (processes, states, variables, expressions, etc.).

Checking the availability of variables, states, etc., used
inside the expressions, and also contextual autocompletion
and navigation through the program text was implemented
using the Xtext linking and scoping mechanism. The work
of the mechanism was achieved with the implementation
stages, described below.

First, we defined the cross-references between the
language concepts at the grammar level. The example
introduced in Fig. 3 shows simplified grammar rules for the
State Reflex language concept, and for the ‘set state’
expression. In the State rule, we use a ‘name’ keyword to
establish the place of State identifier inside the syntactic
construction. Accordingly, we use the State rule name in
square braces inside the ‘set state’ definition. This way, the
identifier of State will be recognized inside the ‘set state’
expression and will be automatically resolved into the
existing AST State object as a result of the parsing.

Fig. 3. Links in the Reflex grammar example

Secondly, we described the semantics of link resolution
through the scoping API. The scoping API is introduced by
the Xtext IScopeProvider Java interface, which is intended
to provide an algorithm for selecting scope for each program
identifier based on its context. In the terms of scoping, the
scope is the set of AST objects, to which a particular
identifier can be potentially resolved. The default
implementation of this API provided by Xtext was

customized in order to implement Reflex link resolution
semantics.

Fig. 4. An example of Reflex language semantic violations (errors and
warnings), shown in the editor

All the detected violations of the Reflex language
semantics are also reported in the RIDE UI, as well as the
syntax errors (Fig. 4).

VI. IDE KERNEL EXTENSION

Kernel extensibility of the desktop RIDE version was
implemented using the standard Eclipse OSGI-bundle
extensions concept [15].

The main kernel bundle declares an extension point
(problem-oriented module extension point). Meanwhile, a
problem-oriented module is represented with an OSGI-
bundle, which simply implements this extension point, and
the delegating code generator is a Java object of a class that
is contained in the main kernel bundle. Once triggered, the
delegating code generator finds all the registered extensions,
which contribute into the problem-oriented module
extension point and invokes the specific method to activate
these modules. The delegating code-generator provides an
AST of the program as the modules’ input by passing it as
the argument of the modules’ activation method.

The extensibility of the Reflex IDE kernel was verified
by implementing a problem-oriented C-code generation
module for microcontrollers of the AVR family. The
module was written using Xtend language. Given an AST as
the input, the module produces a set of *.c-files, which can
be compiled and debugged into a PLC.

VII. CONCLUSION

As a result of this research, an extensible IDE kernel for
the process-oriented language Reflex was created using
Xtext/Eclipse technologies. The kernel is based on the
parser and semantic analysis module. Kernel’s architecture
provides an easy way of extending the development
environment with additional problem-oriented modules, e.g
executable code generators for different hardware platforms,
various Reflex program verifiers, source code analyzers, etc.

The Xtext framework, chosen as a base of the RIDE
kernel, provided:

• A language-based code editor with the syntax
highlighting,

State:

 "state" name=ID "{"

 stateFunction=StatementSequence

 "}";

SetStateStat:

 "set" "state" state=[State] ";";

2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

• interactive reporting of the diagnostic messages,
contextual auto-completion and code navigation,

• an automated generation of AST with Java libraries to
work with it.

Kernel extensibility technology, based on the Eclipse
OSGI-bundle extension mechanism, was developed.

The extensibility of the Reflex IDE kernel was
confirmed by implementing a C-code generation module for
the AVR microcontroller platform.

The described result was used to create a web version of
the IDE, based on the Eclipse Theia technology [16].

Reflex IDE kernel is developed as an open-source
project, the source codes are available at
https://github.com/a-bastrykina/reflex-translator-diploma.

ACKNOWLEDGMENT

Authors are very grateful for the charitable support their
activity from the JetBrains Foundation. We also would like
to thank the anonymous reviewers for their work and
constructive comments.

REFERENCES

[1] I. Anureev, N. Garanina, T. Liakh, A. Rozov, V. Zyubin “Towards
safe cyber-physical systems: the Reflex language and its
transformational semantics,” in IEEE International Siberian
Conference on Control and Communications (SIBCON-2019), April
2019, Tomsk, Russia, 2019, pp. 1–6.

[2] M. Walterbusch, B. Martens, F. Teuteberg, “Evaluating Cloud
Computing Services from a Total Cost of Ownership Perspective,”
Management Research Review, 36(6), pp. 613–638, 2013.
URL: https://www.researchgate.net/publication/237078103_Evaluati
ng_Cloud_Computing_Services_from_a_Total_Cost_of_Ownership_
Perspective

[3] A. Iung, J. Carbonell, L. Marchezan, et al. “Systematic mapping study
on domain-specific language development tools,” in Empirical
Software Engineering, vol. 25, pp. 4205–4249, August 2020.

[4] J. Levine, Flex & Bison: Text Processing Tools, O'Reilly Media, Inc.,
2009.

[5] T. J. Parr, and R. W. Quong, “ANTLR: A predicated‐LL (k) parser
generator,” in Software: Practice and Experience, 25(7), pp.789–810,
1995.

[6] F. Campagne, The MPS language workbench: vol. 1, CreateSpace
Independent Publishing Platform, North Charleston SC, United States,
2014.

[7] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend, Packt Publishing Ltd, Birmingham B3 2PB, UK, 2016.

[8] Eclipse – Xtend. Documentation. URL:
https://www.eclipse.org/xtend/documentation/index.html

[9] H. Bünder, “Decoupling Language and Editor-The Impact of the
Language Server Protocol on Textual Domain-Specific Languages,”
in MODELSWARD, 2019, pp. 129–140.

[10] A community-driven source of knowledge for Language Server
Protocol implementations, URL: https://langserver.org/

[11] R. Pattis, “EBNF: A Notation to Describe Syntax,” pp. 1–19, 2013.

[12] Y. Jianan “Transition from EBNF to Xtext,” in Poster Session and
ACM SRC of MODELS, Valencia, Spain, 2014, pp. 75–80.

[13] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse
modeling framework, Pearson Education, 2008.

[14] H. Behrens et al. Xtext user guide, pp. 43–56. URL:
https://www.eclipse.org/Xtext/documentation/1_0_1/xtext.pdf

[15] L. Vogel, Eclipse Rich Client Platform (Vogella Series), Lars Vogel,
2015, pp. 145–173.

[16] K. V. Marchenko, “Using Eclipse Theia to develop an IDE for the
process-oriented language Reflex,” [Ispolzovaniye Eclipse Theia dlya
sozdania integririvannoy sredy razrabotki prorgam na process-
orientirovannom yazyke Reflex] (In Russian) Data of 58-th

International Student Science Conference ISSC-2020 [Materialy 58-
oy Mezhdunarodnoy Studenchskoy Konferencii], p. 146, 2020

