
2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM) 

978-0-7381-4389-7/21/$31.00 ©2021 IEEE 

PoST2ST: a web service for translating poST 

programs to the IEC 61131-3 Structured Text 

Vladislav Bashev   

Institute of Automation and 

Electrometry 

SB RAS 

Novosibirsk, Russia

Andrei Rozov  

Institute of Automation and 

Electrometry 

SB RAS 

Novosibirsk, Russia

Vladimir Zyubin  

Institute of Automation and 

Electrometry 

SB RAS 

Novosibirsk, Russia 

Abstract—This paper describes a web application 

(http://post2st.iae.nsk.su) for translation of the poST (process-

oriented Structured Text) language, a process-oriented 

extension for the ST (Structured Text) language from the IEC 

61131-3 language set. The poST language, developed at the 

Institute of Automation and Electrometry SB RAS, is a 

language for describing programs for cyber-physical systems 

implemented on the basis of PLCs. The service allows one to 

create small programs in the poST language without installing 

software on the user's side, which simplifies the initial 

acquaintance of users with the poST language. The service 

provides checking the syntax and semantics rules of programs, 

and generating ST code and PLCopen XML Exchange format, 

which can be used in existing IEC 61131-3 development tools 

such as CoDeSys. The relevance of such a service is 

substantiated, its graphical interface and functionality are 

described. 

Keywords—web application, process-oriented programming, 

PLC languages, IEC 61131-3, Structured Text 

I. INTRODUCTION 

The growing complexity of modern control systems and 
the tendency for their widespread use motivates researchers 
to develop new approaches to their design, programming and 
building.  

The isolation of this field of research from computational 
programming is due to the following features. Software 
employed in control systems is open (i. e. communicate with 
an external environment), event-driven, and concurrent (have 
to process a set of independent events occurring in the 
external environment). 

An approach aimed at addressing these features of 
control software has been developed within the process-
oriented paradigm [1]. 

Process-oriented programming (POP) involves 
specifying control software with a set of concurrently 
running processes. Internally the processes have a state-
machine-like structure and are equipped with operations for 
managing time intervals and inter-process communication. 
Concurrent behavior of the system is arranged via 
consequent execution of active process states on each 
program cycle. Compared to other known state-machine-
based approaches, such as CSP [2], Input / Output Automata 
[3], Harels State-charts [4], Hybrid Automata [5], Esterel [6], 
Calculus of Communicating Systems [7], and their 
extensions [8, 9], the POP approach combines system 
concurrency on the global scale with local linearity of 

behavior within each process. 

POP provides a conceptual basis for multiple domain-
specific programming languages (DSLs) that are intended for 
natural control software specification.  

Within this paradigm new C-like languages Reflex and 
IndustrialC [10, 11] have been developed along with the 
Pascal-like language poST [12]. The Reflex language targets 
PC-based control software for large-scale industrial 
applications, while IndustrialC is tailored for 
microcontroller-based embedded systems. 

As practice shows, the Reflex  language can be 
successfully used in industrial applications and offers a 
number of significant advantages in control software 
programming [13, 14, 15]. However, its widespread use in 
practice is hindered by the conservative nature of the 
domain. The developer community tends to be wary of 
introducing any new emerging technology to the process. 
Historically, the majority of control software is still 
implemented within the so called PLC-approach, that is 
based on the IEC 61131-3 languages [16], and PLC 
manufacturers are reluctant to deviate from this standard.  

The IEC 61131-3 includes two textual languages 
(assembler-like Instruction List and Pascal-like Structured 
Text), and three graphical languages (relay racks imitating 
Ladder Diagram, Function Block Diagram based on the data 
flow control approach, and Petri-net based Sequential 
Function Chart).  

None of the IEC 61131-3 languages use C-like notations, 
and an attempt to include a C-like language in the IEC 
61131-3 standard will fail even if the language is an 
extremely powerful one. 

In order to face this challenge we proposed to adapt the 
process-oriented approach for the ST procedural 
programming language in the same way as it was done for 
the C language in case of Reflex. The process-oriented 
extension of ST was called the poST language. 

The poST language can therefore be of particular interest 
to the PLC community as it extends the Structured Text 
language from IEC 61131-3. The additional attractiveness of 
the poST language is due to the wide popularity of the ST 
language. According to the CoDeSys GmbH (former 3S-
SmartSoftware Solutions GmbH), the ST language is 
regularly used by up to 70% of users, and the number is 
constantly growing [17]. 

The poST language combines advantages of the process-
oriented paradigm with conventional syntax of  the ST This work was supported by the Russian Ministry of Education and 

Science, project no. AAAA-A19-119120290056-0. 

https://orcid.org/0000-0003-4404-0293
https://orcid.org/0000-0002-7468-0411
https://orcid.org/0000-0002-8198-3197
http://post2st.iae.nsk.su/


2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM) 

 

language and can be easily adopted by the PLC community. 
The poST language assumes that a poST-program is a set of 
weakly connected concurrent processes, structurally and 
functionally corresponding to the technological description 
of the plant. Each process is specified by a set of states. The 
states are specified by a sequence of the ST constructs, 
extended by TIMEOUT operation, SET STATE operation, 
and START / STOP / check state operations to communicate 
with other processes.  

For the poST language we have already developed an 
Eclipse-based IDE [18], including a parser and syntax-
directed editor. Code generation modules for the C and ST 
languages have been implemented. The generated ST-code 
can be automatically converted in the PLCopen XML 
Exchange format [19], which makes integration with the IEC 
61131-3 tools easier. The approach assumes that the 
generated code will be translated to executable form and 
uploaded to the target platform with an existing C or IEC 
61131-3 toolchain. 

Therefore, aside from the standard toolchain, the user 
currently needs to install the poST IDE on their local 
computer. This additional required effort limits the number 
of users who would try to familiarize themselves with the 
poST language. 

To solve this problem, we propose to use network 
technologies and provide web applications for translating 
poST language into ST language and PLCopen XML 
Exchange format. 

In the first part of the paper, the advantages of poST are 
briefly described, the specifics of programming on existing 
IEC 61131-3 tools are analyzed, and requirements for the 
functionality of a web application are formulated. The 
second part describes the architecture of the web application 
being developed. The third part is devoted to the 
implementation, interface and functionality of the web 
application. 

II. REQUIREMENTS 

Currently, the issue of integrating the poST language into 

the CoDeSys environment [20] is under research. We 

developed a translator into the ST language and a wrapper 

of the ST-files to the PLCopen XML Exchange format. We 

are using DSL technologies [21] based on the Eclipse / 

Xtext framework [22]. As a result we have poST IDE and 

poST to ST jar-translator, which is an independent java 

program [23] to be used in console mode.  

The following requirements were formulated:  

(1) the functionality of the application should be 

accessed by the user through a web browser with an 

active network connection  only 

(2) web browser independence of the web application 

(3) user interface should provide:  

(a) poST examples and patterns 

(b) editor window for poST-program 

(c) uploading poST program from the user local 

PC into the editor window 

(d) downloading the poST-program, generated 

ST-programs, and PLCopen XML Exchange 

file 

(e) window for the translator error and warning 

messages 

(f) user feedback form 

(4) independence from the specific IEC 61131-3 IDE. 

III. POST2ST WEB APPLICATION ARCHITECTURE AND 

IMPLEMENTATION 

A. Architecture 

The client-server architecture [24] of the poST2ST web 

application is depicted in Fig. 1. The client-server 

interaction is based on the standard HTTP protocol [25] 

with HTML [26]. 

 

Fig. 1. Web application architecture 

The web application is deployed on the following address:  

http://post2st.iae.nsk.su.  

B. Client Side 

The client side of the web application is represented by 
the user interface (Fig.2). The user interface is displayed in a 
browser. Upon accessing the resource's network address, the 
browser receives and interprets the HTML/CSS/JavaScript 
code of the start page. 

The interface (Fig.2) has three text windows: 

(1) poST window for the editable poST source code 

(2) ST window for the resulting ST code 

(3) Message window for diagnostic messages from the 
translator. 

At the upper right part (above the windows) of the page 
there are the “About” button and the link to the site of the 
Institute of Automation and Electrometry of the SB RAS. 

At the bottom right part (under the windows) of the page 
there is a block of buttons (Fig.3), consisting of three 
columns: 

(1) “Translate to” and “Open” column with the 
following buttons: 

(a) “Translate” button to start poST to ST 
translation 

(b) “Choose file” button to select a poST file 
from the user's local PC 

(c) “Open” button to upload the selected poST-
program in the window 

(2) “Downloads” column with the following buttons: 

http://post2st.iae.nsk.su/


2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM) 

 

(a) “poST code” button to download the source 
poST-program 

(b) “ST code” button to download the resulting 
ST code 

(c) “XML Exchange” button to download the 
resulting XML file (PLCopen XML 
Exchange format). 

(3) “Examples” column with the following buttons: 

(a) “Empty template” button to initialize the 
poST window with poST program template 

(b) “Hand Dryer” button to initialize the poST 
window with the Hand Dryer poST 
program 

(c) “Elevator” button to initialize the poST 
window with the Three-floor elevator poST 
program 

 

Fig. 2. User’s  interface 

 

Fig. 3. Block of buttons 

The user’s interface is specified in HTML using 
Bootstrap CSS styles [27] and JavaScript for line numbering. 

C. Server Side 

Upon first access, the server opens a unique session for 
the user. For this session, the server generates a unique 
random UUID [28] and allocates disk space for the 
temporary user's directory. This UUID is saved in encrypted 
form as a client's cookie [29] and is used to identify the 
current working directory for the user (Fig. 4). 

The user directory contains: 

(1) the poST code file 

(2) the ST code file (if generated) 

(3) the PLCopen XML Exchange format file (if 
generated) 

(4) the translator log-file (if generated). 

 

Fig. 4. A mechanism for identify a user to a directory 

At the beginning the server generates the initial HTML-
code for the client. If the poST, ST and log files exist, the 
server inserts them into the initial HTML-code. 

The implementation of the server side of the application 
is based on the Flask framework [30].  

Upon the user’s command, the browser sends a request to 
the server, which contains the command identifier and data. 
The request from the client side is passed to the user request 
processing module (URPM). Upon receipt of the request, the 
URPM processes it depending on the command.  

Upon the "Translate" command, the browser sends the 
edited poST-code within the request to the server. The 
“Translate” URPM copies the file to the directory and 
executes the “Traslate” Bash-script [31] through Shell. The 
script sets the user’s directory, redirects the output of the 
poST to ST jar-translator to the log-file, calls the poST to ST 
jar-translator for the poST-code. The poST to ST jar-
translator generates the resulting ST-code, XML-file, and 
log-file. Once the bash script finishes, URPM reads the files, 
generates the HTML-page and sends it to the client (Fig. 5). 

 

Fig. 5. User’s  interface 

The "Download poST", "Download ST", and "Download 
XML" URPMs are implemented by the standard browser 
functions. The URPMs save the files from the server.  

The "Empty template", "Hand Dryer", "Elevator" 
URPMs use the corresponding files that are stored on the 
server side. 

The poST to ST jar-translator is executed using JVM 1.8 
under Linux / Ubuntu. 



2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM) 

 

The source codes of the project can be found through the 
github repository [32]. 

IV. CONCLUSION 

This paper describes a web application for translation of 
the poST language to the IEC 61131-3 ST language. The 
service allows one to create small programs in the poST 
language without installing software on the user's side, which 
simplifies the initial acquaintance of users with the poST 
language. The service provides checking the syntax and 
semantics rules of programs, and generating ST code and 
PLCopen XML Exchange format, which can be used in 
existing IEC 61131-3 development tools such as CoDeSys.  

The service is implemented with client-server 
architecture using the Flask framework and based on the 
poST to ST jar-translator obtained in the Eclipse/Xtext 
framework. 

The poST to ST jar-translator is executed using JVM 1.8 
under Linux / Ubuntu. 

The web application allows users to test the poST 
language without installing additional software. 

We plan to use the proposed approach for promotion and 
testing of multiple other tools developed within future 
research projects. 

ACKNOWLEDGMENT 

Authors are very grateful for the charitable support they 
received from the JetBrains Foundation. 

REFERENCES 

[1] V. E. Zyubin, "Hyper-automaton: a Model of Control Algorithms," 
Siberian Conference on Control and Communications, Tomsk, 2007, 
pp. 51-57, doi: 10.1109/SIBCON.2007.371297.  

[2] C. A. R. Hoare, "Communicating Sequential Processes," Prentice-
Hall Int., 1985. 

[3] N. Lynch, M. Tuttle, "An Introduction to Input/Output Automata," 
CWI Quarterly, 1989, vol. 2, pp. 219–246. 

[4] D. Harel, "Statecharts a Visual Formalism for Complex Systems," 
Science of Computer Programming 8. Elsevier Science Publishers 
B.V., North-Holland, 1987, pp. 231–274. 

[5] R. Milner, "Communication and Concurrency," Series in Computer 
Science. Prentice Hall, 1989. 

[6] G. Berry, "The Foundations of Esterel," Proof, Language, and 
Interaction: Essays in Honour of Robin Milner, MIT Press, 
Foundations of Computing Series, 2000, pp. 425–454. 

[7] D. K. Kaynar, N. Lynch, R. Segala, F. Vaandrager, "Timed I/O 
Automata: A Mathematical Framework for Modeling and Analyzing 
Real-Time Systems," Proc of 2003 IEEE 24th International Real-
Time Systems Symposium (RTSS’03), IEEE Computer Society 
Cancun, Mexico, 2003, pp. 166–177. 

[8] L. Kof,  B. Schtz, "Combining Aspects of Reactive Systems," Proc. of 
Andrei Ershov Fifth Int. Conf. Perspectives of System Informatics. 
Novosibirsk, 2003, pp. 239–243. 

[9] T. A. Henzinger, "The Theory of Hybrid Automata," Verification of 
Digital and Hybrid Systems. NATO ASI Series (Series F: Computer 
and Systems Sciences), Springer, Berlin, Heidelberg. 2000, vol. 170, 
pp. 265–292. 

[10] I. Anureev, N. Garanina, T. Liakh, A. Rozov, H. Schulte, V. Zyubin, 
"Towards Safe Cyber-Physical Systems: the Reflex Language and Its 
Transformational Semantics," in International Siberian Conference on 

Control and Communications (SIBCON), Tomsk, Russia, 2019, pp. 
1-6, doi: 10.1109/SIBCON.2019.8729633. 

[11] A. S. Rozov, V. E. Zyubin, "Adaptation of the Process-Oriented 
Approach to the Development of Embedded Microcontroller 
Systems," Optoelectronics. Instrumentation and Data Processing, 
2019, Vol. 55, No. 2, pp. 198–204. DOI: 
10.3103/S8756699019020122 

[12] V. Bashev, I. Anureev, V. Zyubin, "The Post Language: Process-
Oriented Extension for IEC 61131-3 Structured Text," 2020 
International Russian Automation Conference (RusAutoCon), Sochi, 
Russia, 2020, pp. 994-999, doi: 
10.1109/RusAutoCon49822.2020.9208049. 

[13] T. V. Liakh, A. S. Rozov, V. E. Zyubin, "Reflex Language: a 
Practical Notation for Cyber-Physical Systems," System Informatics, 
No. 12 (2018) pp. 85-104 

[14] P. G. Kovadlo, A. A. Lubkov, A. N. Bevzov et al., "Automation 
system for the large solar vacuum telescope," 
Optoelectron.Instrument.Proc. 52, 187–195 (2016). 
https://doi.org/10.3103/S8756699016020126 

[15] T. V. Liah and V. E. Zyubin, "The reflex language usage to automate 
the large solar vacuum telescope," 2016 17th International 
Conference of Young Specialists on Micro/Nanotechnologies and 
Electron Devices (EDM), Erlagol, Russia, 2016, pp. 137-139, doi: 
10.1109/EDM.2016.7538711. 

[16] "IEC 61131-3 Programmable Controllers – Part 3: Programming 
languages," International Standard, Second Edition, 2003. 

[17] I. Petrov, R. Wagner, "Debugging applied PLC software in CoDeSys 
(part 3)," Industrial Automatic Control Systems and Controllers, 4, 
pp.34-36 NAUCHTEKHLITIZDAT, 2006 

[18] J. Wiegand, "Eclipse: A platform for integrating development tools," 
in IBM Systems Journal, vol. 43, no. 2, pp. 371-383, 2004, doi: 
10.1147/sj.432.0371. 

[19] M. Marcos, E. Estevez, F. Perez, E. V. Der Wal, "XML exchange of 
control programs," in IEEE Industrial Electronics Magazine, vol. 3, 
no. 4, pp. 32-35, Dec. 2009, doi: 10.1109/MIE.2009.934794 

[20] D. H. Hanssen, "Programmable Logic Controllers: A Practical 
Approach to IEC 61131-3 using CoDeSys," Wylie & Co., 2015.  

[21] C. Schmitt, S. Kuckuk, H. Köstler, F. Hannig, J. Teich, "An 
Evaluation of Domain-Specific Language Technologies for Code 
Generation," 14th International Conference on Computational Science 
and Its Applications, Guimaraes, 2014, pp. 18-26, doi: 
10.1109/ICCSA.2014.16. 

[22] M. Eysholdt, H. Behrens, "Xtext: implement your language faster 
than the quick and dirty way," Proceedings of the ACM international 
conference companion on Object oriented programming systems 
languages and applications companion, OOPSLA, ACM, 2010, New 
York, USA, 307–309, doi: 10.1145/1869542.1869625. 

[23] K. Arnold, J. Gosling, "The Java Programming Language," The Java 
Series, Addison-Wesley Publishing Company, Reading, 
Massachusetts, 1996. 

[24] H. S. Oluwatosin, "Client-server model," IOSRJ Comput. Eng 16.1 
(2014): 2278-8727. 

[25] R. Fielding et al., "RFC2616: Hypertext Transfer Protocol--
HTTP/1.1." (1999). 

[26] D. Raggett, A. Le Hors, I. Jacobs, "HTML 4.01 Specification," W3C 
recommendation 24 (1999). 

[27] S. Bhaumik, "Bootstrap essentials," Packt Publishing Ltd, 2015. 

[28] P. Leach, M. Mealling, R. Salz. "A universally unique identifier 
(uuid) urn namespace." (2005): 1. 

[29] J. S. Park, R. Sandhu. "Secure cookies on the Web," IEEE internet 
computing 4.4 (2000): 36-44. 

[30] M. Grinberg, "Flask web development: developing web applications 
with python," O'Reilly Media, Inc.", 2018. 

[31] C. Newham, B. Rosenblatt, "Learning the bash shell: Unix shell 
programming," O'Reilly Media, Inc.", 2005. 

[32] Github project repository, "poST language translation web 
application", URL: https://github.com/Vlad264/flask_poST_webIDE  

 

https://github.com/Vlad264/flask_poST_webIDE

