
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Debugging Reflex-programs on digital plant models
Alexandr Dvinianin

Institute of Automation and Electrometry

Siberian Branch of the RAS

Novosibirsk, Russian Federation
a.dvinianin@g.nsu.ru

Tatiana Liakh

Institute of Automation and Electrometry

Siberian Branch of the RAS

Novosibirsk, Russian Federation
antsys_nsu@ mail.ru

SAbstract—Reflex is a process-oriented language designed for

the development of control software in cyber-physical systems.

Cost of errors in such systems is very high. Dynamic debugging

allows to check the quality of control software and prevent

breakdowns. However, there are no debugging tools for the

Reflex language. In this paper, we describe a dynamic debugging

module for the Reflex language. The debug module can be used

with AVR168/328 microcontrollers as well as on the user's PC.

Input port values can be managed either manually or by a

simulated control plant, also described in the Reflex language.

Users can debug Reflex program in step-by-step and cycle-by-

cycle mode.

Keywords—Process-oriented programming, Dynamic

debugging, Digital plant, Software simulation, Cyber-physical

systems, Control software.

I. INTRODUCTION

The development of software for cyber-physical systems
(CPS) is associated with a number of difficulties. CPS software
has a number of features which complicates development:

 Openness - software interacts with an "open world"
through sensors and gates

 Event-driven behaviour - software generates a control
signal according to the data received from the external
environment

 Logical parallelism - control algorithm consists of
many parallel independent or loosely coupled
processes

 System operation time is not limited - software must be
functional until a special command is received

 Synchronism - an external environment is an inert
physical object that does not change its state instantly

This leads to the fact that CPS software developers use
specialized language tools (such as IEC-61131[1], G
LabVIEW[2], etc.). One of such language tools is Reflex[3,4],
a process-oriented language developed by the Institute of
Automation and Electrometry and intended for programming
logic control devices. A Reflex program is a complex of
processes. Each process is a state machine with a set of
dedicated states and a time service.

The Institute of Automation and Electrometry SB RAS is
developing an integrated development environment for the

Reflex language called RIDE. RIDE assumes the basic
functionality of development environments, static and dynamic
verification on a virtual control plant, as well as the possibility
of dynamic debugging.

Due to the high cost of errors in the development of CPS
software, dynamic debugging is one of the most common ways
to control software quality. For the Reflex language, a
translator to c-code and code for Atmega16 have been
developed, but there are no built-in dynamic debugging tools in
the environment.

The article presents debugging technology for Reflex
programs on Atmega microcontrollers using digital models of a
control plant.

Section II of the article describes various debugging
technologies used for microcontrollers. Section III describes
the developed debugging approach and architecture of the
software package. Section IV provides further plans.

II. DOMAIN ANALYSIS

In the field of microcontrollers, various interfaces are used for

debugging. The most common are JTAG[5] and SWD[7]

interfaces.
The JTAG interface was developed for testing chips and

boards[6], but later it became possible to flash and debug.

SWD is an ARM special protocol designed specifically for on-

chip debugging. Both protocols allow you to debug the

program step by step or using breakpoints and also allow

read/write operations of memory, but unfortunately, to work

with these interfaces, expensive additional equipment is

required.
Also, the CODESYS[8] software package and

debugWire[9] and debugMon[10] interfaces were analyzed.

CODESYS is intended for the development of programs for

programmable logic controllers, allow step-by-step and

breakpoint debugging, and read/write operations.
DebugWire and debugMon interfaces were developed for

debugging microcontrollers with limited resources, such as 8-

bit AVRs.
In addition to the above, there are many handwritten

libraries, most of which allow information to be output

through the UART serial interface.
Thus, the standard set of functions of a modern debugger is

step-by-step and breakpoint debug modes, memory read/write,

and the ability to emulate a microcontroller.

III. REFLEX-CODE DEBUGGING TECHNOLOGY

The developed debugging algorithm is shown in Figure 1.
The algorithm starts with initialization (red area), in which the
debugger receives information about processes and variables
from configuration files that were automatically generated by
the translator from the Reflex code (1), and also receives
physical addresses of variables from a microcontroller (2) and
passes the “next” command (3). Then comes debugging by
itself (blue area): the debugger waits for information about the
state, and the microcontroller executes the Reflex code before
calling the debug (4) function, then it transfers its state to the
debugger (5) and waits for the next command (6). The
debugger processes the received state (7) and sends the “next”
command (8), after which the algorithm goes to step 4.

Fig. 1. Debugging algorithm

If it is necessary to change the value of a variable (Fig. 2),
the debugger sends a writing packet consisting of the size of
the variable, its address and the value to be written. The
microcontroller executes the command and continues to wait
for the “next” command. Figure 3 demonstrates packet format
of initialization, state transfer, and setting.

Fig. 2. “Write” command algorithm

Fig. 3. Initialization (1), state transfer (2) and write (3) packet format

IV. ARCHITECTURE

The debugger architecture is shown in Fig. 4. The modified
translator of Reflex-code (2) according to the rcs source file (1)
generates source codes for compilers (3, 9), as well as files
with information about variables and processes (7) for the
debugger (8). Further, the code for the microcontroller is
compiled (10) and flashed (11), and an executable file is
compiled (4) from the c-code source, which the debugger
program can run (5). Next, the debugger interacts via a virtual
COM port with a microcontroller (12), or, if necessary, with a
plant simulator, also developed in Reflex (6).

Fig. 4. Architecture of debugger

V. INTERFACE

On launch user chooses the name of the project (Fig. 5, 1),
as well as whether to connect to a virtual port or run a
simulated process (2). It is also possible to choose a variable
name and send a command to write (3). The user can choose
one of the debugging modes: step-by-step, tact-by-tact or
breakpoints.

Fig. 5. Control panel

The window on Figure 6 displays processes of program (1),
the current state of the process (2) and state setting time (3).

Fig. 6. Window with state of processes

Figure 7 displays a window with state of all variables (1)
and a window with Reflex code (2). The current executable
line is highlighted in green (3).

Fig. 7. State of variables (1) and Reflex-code (2)

VI. CONCLUSION

As a result of the work, a software complex for debugging
Reflex programs was developed. The developed technology
makes it possible to debug the Reflex code on the AVR168
microcontroller, including:

 Step by step debugging

 Debugging with breakpoints

 Matching Reflex Code Strings

 Reflex code execution on the simulator

 Manual debugging and debugging on a virtual control
object

In the future, we plan to integrate the debugging module
into web-IDE RIDE for process-oriented languages.

VII. REFERENCES

[1] IEC 61131-3: Programmable controllers. Part 3: Programming

languages. 2nd edn. International Electrotechnical Commission. (2003)

[2] Travis J., Kring J. LabVIEW for everyone: graphical programming
made easy and fun. 3rd edn. Prentice Hall PTR, Upper Saddle River, NJ,
USA, (2006)

[3] Liakh T.V., Rozov A.S., Zyubin V.E.: Reflex language: a practical
notation for cyber-physical systems. System Informatics. 12, 85–104
(2018)

[4] Anureev I.S: Operational semantics of Reflex. System Informatics. 14,
1–10 (2019)

[5] 1149.1-1990—IEEE Standard test access port and boundary-scan
architecture. Institute of Electrical and Electronics Engineers (1990)

[6] Lau S.: Reinventing JTAG for SoC debugging,
embedded.com/reinventing-jtag-for-soc-debugging, last accessed
2021/04/10

[7] Williams M.: Low pin-count debug interfaces for multi-device system,
semanticscholar.org/paper/Low-Pin-count-Debug-Interfaces-for-Multi-
device-Williams/12d9b9320b74dfd0d00123f5d271e9ca65c9128b, last
accessed 2021/04/10

[8] Hanssen H.: Programmable logic controllers: a practical approach to
IEC 61131‐3 using CODESYS. John Wiley & Sons Limited, the
Atrium, Southern Gate, Chichester, England, W Sussex, Po19 8sq
(2015)

[9] The debugWire protocol, ruemohr.org/docs/debugwire.html, last
accessed 2021/04/10

[10] CortexM3 Technical Reference Manual,
developer.arm.com/documentation/ddi0337, last accessed 2021/04/10

