
Static Checking Consistency of
Temporal Requirements for Control Software

Natalia Garanina1 and Dmitry Koznov2

1 A.P. Ershov Institute of Informatics Systems,
Institute of Automation and Electrometry, Novosibirsk, Russia

garanina@iis.nsk.su
2 St. Petersburg University, Russia

d.koznov@spbu.ru

Abstract. In this paper, we propose an approach to checking consis-
tency of control software requirements described using pattern-based no-
tation. This approach can be used at the beginning of control software
verification to effectively identify contradicting and incompatible require-
ments. In this framework, we use pattern-based Event-Driven Temporal
Logic (EDTL) to formalize the requirements. A set of requirements is
represented as a set of EDTL-patterns which formal semantics defined
by formulas of linear-time temporal logic LTL. Based on this semantics,
we define the notion of requirement inconsistency and describe restric-
tions on the values of pattern attributes which make requirements incon-
sistent. Checking algorithm takes as an input pairs of requirements and
compare their attributes. Its output is sets of consistent, inconsistent and
incomparable requirements.

Keywords: Requirement engineering · Requirement consistency · For-
mal semantics · Linear Temporal Logic

1 Introduction

The long-term goal of our work is formal verification of control software (CS),
specified in the process-oriented paradigm, in particular, written using the Do-
main-Specific Language (DSL) Reflex and poST [1,3,9].

In [16], for control software requirements, we propose a pattern-based speci-
fication formalism EDTL (Event-Driven Temporal Logic). EDTL-specifications
has the following features: (1) a pattern form includes CS-specific concepts (such
as trigger, reaction, etc.) which allow engineers to easily define requirements;
(2) formal semantics provides possibility to apply formal verification methods.
In particular, we can use model checking methods if EDTL-semantics is LTL-
formulas [4].

Pattern-based systems for the development of requirements and their formal
verification are an active topic of research for a long time [2,10,11,13,14,15].
Patterns are parameterized natural language expressions that describe typical
requirements for a system behavior. Typically, parameters of patterns are system

2 N. Garanina et al.

events or their combinations (for example, in the pattern “Event Device_enabled
will occur”, Device_enabled is a parameter). Patterns usually have strict formal
semantics. Patterns make it easy for requirement engineers to specify and verify
typical system requirements.

Usually, control software systems have to meet a large number of require-
ments. Therefore, before applying formal verification methods, it is reasonable
to check this list for consistency of the requirements in order to avoid unnec-
essary use of expensive formal methods. In this paper, we propose a method
for checking the consistency of a requirements set based on pairwise comparing
requirements with LTL-semantics. This pairwise consistency checking is propo-
sitional in the sense that it uses only the pattern representation of requirements
and does not use a description of the control system. While this method only
gives an exact answer for requirements that satisfy certain constraints, it can
significantly reduce the time and cost of full consistency checking a set of re-
quirements.

Checking consistency of requirements is rather necessary process in concur-
rent system development. A semi-automatic method presented in [12] helps to
write use-case scenarios in a natural language iteratively and to verify tempo-
ral consistency of the behavior encoded in them. This method is used to check
consistency of the textual specification of the use-case scenarios taking into ac-
count specific annotations written by user. These annotations are converted into
temporal logic formulas and verified within the framework of a formal behav-
ior model. A commercial requirement engineering tool for embedded systems
Argosim [17] allows software engineers to test the systems and perform incon-
sistency checking for requirements. Ontology based checking is suggested in [7].

The rest of the paper is orgaised as follows. In Section 2, we give a brief
description of syntax and semantics for EDTL-requirements. Section 3 describes
the method of checking inconsistency for two requirements which patterns have
non-constant attributes only. Section 4 uses results of the previous section to
define a function that verify inconsistency of two requirements. In Section 5, we
describe the algorithms that implement our method. Section 6 is conclusion.

2 Event-Driven Temporal Logic Pattern

Let us define EDTL-requirements. Informally, a EDTL-requirement is a com-
bination of system events bounded by specified temporal interrelations. These
events are attributes of the EDTL-requirement.

Definition 1. (EDTL-requirements)
An EDTL-requirement R is a tuple of the following EDTL-attributes:

R = (trigger, invariant,final,delay, reaction, release).

We give the informal meaning of the attributes and interrelations:

trigger an event after which the invariant must be true until a release event or
a reaction takes place; this event is also the starting point for timeouts to
produce final/release events (if any);

Static Checking Consistency of Requirements 3

invariant a statement that must be true from the moment the trigger event
occurs until the moment of a release or reaction event;

final an event, after which a reaction must occur within the allowable delay;
this event always follows the trigger event;

delay a time limit after the final event, during which a reaction must appear;
reaction this statement must become true within the allowable delay from the

final event;
release upon this event, the requirement is considered satisfied.

The following natural language description of EDTL-requirement semantics cor-
responds to this informal description:
Following each trigger event, the invariant must hold true until either a release
event or a final event. The invariant must also hold true after final event till
either the release event or a reaction, and besides the reaction must take place
within the specified allowable delay from the final event.
The values of EDTL-attributes are EDTL-formulas. The EDTL-formulas are

divided into two classes: state formulas and event formulas. Informally, the state
formulas assert about system variables’ values in a given time moment, but the
event formulas assert about events that just happen or not happen, i.e. chang-
ing/keeping variables’ values since the previous time moment. In this paper,
we focus on LTL semantics of EDTL-requirements, hence we consider EDTL-
formulas are constructed from propositions as follows:

Definition 2. (EDTL-formulas)
Let p be a proposition, ϕ and ψ be EDTL-formulas. Then:

– state formulas:
• true, false, and p are an atomic EDTL-formulas;
• ϕ ∧ ψ is the conjunction of ϕ and ψ;
• ϕ ∨ ψ is the disjunction of ϕ and ψ;
• ¬ϕ is the negation of ϕ;

– event formulas with proposition3 p:
• \p is the falling edge: the value of p changes from false to true;
• /p is the rising edge: the value of p changes from true to false;
• _p is low steady-state: the value of p remains equal to false;
• ∼ p is high steady-state: the value of p remains equal to true.

The detailed semantics of these formulas is given in [16]. Informally, the se-
mantics of the state formulas is standard semantics for LTL-formulas without
temporal operators, but the semantics of the event formulas uses satisfiability
of the proposition in the previous system state. This semantics can be modelled
by temporal operator X−1 of PLTL [8] or by introducing into the model special
ghost variable prev(p) which keep the previous value of proposition p. In the
latter case, the semantics of the event formulas is reduced to semantics of the
state EDTL-formulas as follows:
3 In general, event formulas can take all EDTL-formulas, but for simplicity, we restrict
them by propositions only. The results of this paper can easily be generalised for all
EDTL-formulas.

4 N. Garanina et al.

Definition 3. (Semantics of event EDTL-formulas)

– /p ≡ ¬prev(p) ∧ p;
– \p ≡ prev(p) ∧ ¬p;
– ∼ p ≡ prev(p) ∧ p;
– _p ≡ ¬prev(p) ∧ ¬p.

Further in the paper, we assume that all EDTL-formulas are state formulas.
Let us define the LTL-semantics for EDTL-requirements. In this paper, we

consider control systems which have model as a Kripke structure. Let P be set
of propositions.

Definition 4. (Kripke structures)
A Kripke structure is a tuple M = (S, I,R, L), where

– S is a set of states, and
– I ⊆ S is a finite set of initial states, and
– R ⊆ S × S is a total transition relation, and
– L : P → 2S is a mapping function.

A path π = s0, s1, . . . is an infinite sequence of states si ∈ S such that ∀j >
0 : (sj , sj+1) ∈ R, and let π(i) = si. An initial path π0 is a path starting from
initial state, i.e. π0(0) ∈ I.
Let for control system C its Kripke structure be MC . Let trigger, invariant,
final, delay, reaction, and release be EDTL-formulas which are the values of
the EDTL-attributes of a requirement req.

Definition 5. (Semantics of EDTL-requirements)
EDTL-requirement req is satisfied in a control system C iff the following LTL-
formula Φreq is satisfied in MC for every initial path:
Φreq = G(trigger → ((invariant ∧ ¬finalWrelease) ∨

(invariantU(final ∧ (invariant ∧ delayU(release ∨ reaction)))))).
We use this semantics in model checking control systems w.r.t. the EDTL-
requirements and for checking consistency of the EDTL-requirements.

Definition 6. (Satisfiability of EDTL-requirements)
Requirement r is satisfiable iff there exists a Kripke structure Mr that for every
initial path π: Mr, π |= Φr. This Mr is a model for r.

3 Consistency of EDTL-requirements

In this section, we give the method of checking consistency for two requirements
which patterns have non-constant attributes only.

Definition 7. (The checking inconsistency problem for EDTL-requirements)
Requirement r2 is inconsistent with satisfiable requirement r1 iff Mr1 is not a
model for r2, or, equivalent, their conjunction is unsatisfiable formula in every
model Mr1 , i.e. there exists an initial path π of Mr1 : Mr1 , π 2 Φr1 ∧ Φr2 .
The checking inconsistency problem for EDTL-requirements is to check if two
EDTL-requirements are inconsistent.

Static Checking Consistency of Requirements 5

We use the second form of the inconsistency definition in our checking method
because we compare only the requirements’ attributes without addressing the
models of the requirements and paths in these models. Moreover, due to this
independence from the requirement model, we can deduce thatMr1 , π 2 Φr1∧Φr2

for every initial path π of Mr1 if r2 is inconsistent with r1.
From Definition 5, the requirement semantics is Φreq = G(trigger → Ψ). Let

we be given two EDTL-requirements r1 and r2 with corresponding patterns R1 =
(trig1, inv1, fin1, del1, rea1, rel1) and R2 = (trig2, inv2, fin2, del2, rea2, rel2).
Hence, for every initial path of every Kripke structure M : M,π 2 Φr1 ∧ Φr2 iff
M,π |= ¬(Φr1 ∧Φr2). Here ¬(Φr1 ∧Φr2) = ¬(G(trig1 → Ψ1)∧G(trig2 → Ψ2)) =
¬G((trig1 → Ψ1)∧(trig2 → Ψ2)). Our consistency checking procedure Compare
is based on assumption that trig1 → trig2. This assumptions gives us possibility
to reason about simultaneous satisfiability of EDTL-attributes at some point of
a model path in many cases described below because the last formula implies
¬G(trig1 → (Ψ1 ∧ Ψ2)). Definitely, with this weakening inconsistency condition,
the results of our algorithm are partial, i.e. there exists inconsistent req1 and
req2 for which procedure Compare gives the output “unknown”. For checking
such requirements, an explicit description of a control software model or an
automata-based satisfiability checking method is required.

The following reasoning is based on assumptions that (1) trig1 → trig2 and
(2) Φr1 is satisfiable in some model Mr1 , i.e. for every initial path π of Mr1 ,
Mr1 , π |= Φr1 . By Definition 7 with the weak inconsistency condition Mr1 , π |=
¬G(trig1 → (Ψ1 ∧ Ψ2)) and assumption (2), r2 is inconsistent with r1 iff there
exist initial path π′ of Mr1 such that Mr1 , π

′ |= F¬(trig1 → Ψ2), i.e. there is
some point s′ on π′ where ¬(trig1 → Ψ2) holds on suffix π′s′ of π′. We can use
this fact to describe inconsistency restrictions for r2. But we also know that
Mr1 , π

′
s′ |= trig1 → Ψ1 due to assumption (2), hence, Mr1 , π

′
s′ |= Ψ1 → ¬Ψ2.

Therefore, we consider two cases to describe some inconsistency restrictions for
r2 which do not require knowledge about model Mr1 : (1) ¬(trig1 → Ψ2) in
Subsection 3.1 and (2) Ψ1 → ¬Ψ2 in Subsection 3.2.

Let ϕ1 and ϕ2 be EDTL-attributes which conjunction is false. We call ϕ1

and ϕ2 inconsistent EDTL-formulas and use the following notation: ϕ1 • ϕ2 iff
ϕ1 ∧ ϕ2 ≡ false, and ϕ1 ◦ ϕ2 in other case. For any pair of EDTL-formulas
we can check their inconsistency using standard boolean rules and Definition 3.
Obviously, this checking can be reduced to NP-complete SAT problem. But due
to the small size of EDTL-formulas, check their inconsistency takes reasonable
time. In the description of inconsistency restrictions, for every attributes a1 and
a2, we suppose that if not a1 • a2 then a1 ◦ a2.

The values of EDTL-attributes of requirements can be constant false/true
or mutable var. In this section, we consider the most general case when every
attribute of R1 and R2 has non-constant value.

3.1 Inconsistency Restrictions with Attribute trigger

In this subsection, we describe inconsistency restriction for r2 which provide
¬(trig1 → Ψ2) = ¬(trig1 ∧ Ψ2) on path π′s′ . By assumption (2), trig1 holds

6 N. Garanina et al.

at s′. From Definition 5, Ψ2 = (inv2 ∧ ¬fin2Wrel2) ∨ (inv2U(fin2 ∧ (inv2 ∧
del2U(rel2∨rea2)))). The following restriction on EDTL-attributes of r1 and r2
implies ¬(trig1 ∧ Ψ2):

1. trig1 • inv2 and C2 = ¬((trig1 ∨ inv1 ∨ trig2)→ (rel2 ∨ (fin2 ∧ rea2)));
2. other restrictions are unknown.

Because Ψ2 includes temporal operators and trig1 do not include them, we can
reason only about first point s′ of the path on which trig1 holds and Ψ2 does
not hold. The negation of C2 cancels necessity of satisfiability of inv2. Hence, in
this case, its inconsistency with trig1 does not matter for inconsistency of r2.

3.2 Inconsistency Restrictions with Other Attributes

In this subsection, we describe inconsistency restrictions for r2 which provide
Ψ1 → ¬Ψ2 at π′s′ . From Definition 5, Ψ1 = A1 ∨ B1 and Ψ2 = A2 ∨ B2. Hence,
Ψ1 → ¬Ψ2 = ¬(A1 ∨ B1) ∨ ¬(A2 ∨ B2). Due to satisfiability of Φr1 , A1 ∨ B1 is
satisfiable. Hence, we consider the cases A1 → ¬(A2∨B2) and B1 → ¬(A2∨B2).
These cases are also divided to subcases: (AA) A1 → ¬A2, (AB) A1 → ¬B2,
(BA) B1 → ¬A2, and (BB) B1 → ¬B2. We formulate inconsistency restrictions
for all these cases. Again, from Definition 5:

– A1 = (inv1 ∧ ¬fin1Wrel1),
– B1 = (inv1U(fin1 ∧ (inv1 ∧ del1U(rel1 ∨ rea1)))),
– A2 = (inv2 ∧ ¬fin2Wrel2),
– B2 = (inv2U(fin2 ∧ (inv2 ∧ del2U(rel2 ∨ rea2)))).

(AA) A1 → ¬A2. A1 is satisfiable on path π′s′ . The following restrictions on
EDTL-attributes of r1 and r2 imply Ψ1 → ¬Ψ2:

1. inv1•inv2, C1 = ¬((trig1∨inv1∨¬fin1∨trig2)→ rel1), and C2 = ¬((trig1∨
inv1 ∨ ¬fin1 ∨ trig2)→ rel2);

2. ¬fin1 • inv2, and C1 ∧ C2;
3. inv1 • ¬fin2, and C1 ∧ C2;
4. ¬fin1 • ¬fin2, and C1 ∧ C2;
5. rel1 • inv2, and ¬C1 ∧ C2;
6. rel1 • ¬fin2, and ¬C1 ∧ C2;
7. rel1 • rel2, and ¬C1 ∧ ¬C2;
8. other restrictions are unknown.

In all cases, trig1 and trig2 hold at s′, inv1 and ¬fin1 also hold at s′, if only
rel1 does not happen at this point. Let all restrictions of every case hold at s′
separately. Formulas C1 and C2 provides that, respectively, releases rel1 or rel2
do not happen at s′, because their appearing makes senseless inconsistency of
the corresponding attributes. From now, formulas C1 and C2 specify cancelling
conditions respective to considering cases of restrictions.
(1-2) Obviously, in these cases, A1 → ¬inv2 holds, which implies unsatisfiability
of A2 at s′.

Static Checking Consistency of Requirements 7

(3-4) In these cases, the reasoning is the same.
(5-7) Restrictions of these cases specify appearing rel1 at s′ and its inconsistency
with attributes of r2. Definitely, in these cases, A1 → ¬(inv2∨¬fin2∨rel2) holds
which implies unsatisfiability of A2 at s′.
(8) Our inconsistency checking algorithm checks EDTL-attributes and their
Boolean combinations which are state formulas. Hence, this algorithm can de-
tect inconsistency of EDTL-requirements in model states only. In case (AA),
there is only one state s′ at which we know about satisfiability of r1-attributes
and can define inconsistency restrictions for r2-attributes. Hence, all possibil-
ities for defining static inconsistency restrictions are considered in cases 1–7,
and for defining other inconsistency restrictions, the description of model Mr1

is required.
(AB) A1 → ¬B2. A1 is satisfiable on path π′s′ . The following restrictions on
EDTL-attributes of r1 and r2 imply Ψ1 → ¬Ψ2:

1. inv1•inv2, C1 = ¬((trig1∨inv1∨¬fin1∨trig2)→ rel1), and C2 = ¬((trig1∨
inv1 ∨ ¬fin1 ∨ trig2)→ (rel2 ∨ (fin2 ∧ rea2)));

2. ¬fin1 • inv2, and C1 ∧ C2;
3. inv1 → fin2, ¬fin1 • del2, (inv1 ∨ ¬fin1) • rel2, (inv1 ∨ ¬fin1) • rea2, and
C1;

4. ¬fin1 → fin2, inv1 • del2, (inv1 ∨ ¬fin1) • rel2, (inv1 ∨ ¬fin1) • rea2, and
C1;

5. rel1 • inv2, and ¬C1 ∧ C2;
6. other restrictions are unknown.

In all cases, trig1 and trig2 hold at s′, inv1 and ¬fin1 also hold at s′, if only
rel1 does not happen at this point. Let all restrictions of every case hold at s′
separately.
(1-2) In these cases, A1 → ¬inv2, hence A1 → ¬B2.
(3-4) Here, inv1 (or ¬fin1) causes fin2, and inconsistency ¬fin1 (or inv1) with
del2 requires immediate release rel2 or reaction rea2, but they are also incon-
sistent with inv1 or ¬fin1. Hence, A1 → ¬(fin2 ∧ (inv2 ∧ del2U(rel2 ∨ rea2))),
which implies unsatisfiability of B2 at s′. Note, that an event which causes some
final event cannot be inconsistent with the corresponding delay because this de-
lay starts from this final event which implies that delay must hold at the state
where final happens after the corresponding trigger.
(5) Restrictions of these cases specify appearing rel1 at s′ and its inconsistency
with attributes of r2 similarly to cases 1–4.
(6) As for the case (AA), there is only one state s′ at which we know about sat-
isfiability of r1-attributes. Hence, for defining inconsistency restrictions different
from 1–5, the description of model Mr1 is required.
(BA) B1 → ¬A2. B1 is satisfiable on path π′s′ . The following restrictions on
EDTL-attributes of r1 and r2 imply Ψ1 → ¬Ψ2:

1. inv1 • inv2, and C1 = ¬(C1
1 ∨C2

1), and C2 = ¬((trig1∨ inv1∨ trig2)→ rel2),
where C1

1 = ¬((trig1 ∨ inv1 ∨ trig2) → rel1) and C2
1 = ¬((trig1 ∨ inv1 ∨

trig2)→ (fin1 ∧ rea1));

8 N. Garanina et al.

2. inv1 • ¬fin2, and C1 ∧ C2;
3. rel1 • inv2, and ¬C1

1 ∧ C2;
4. rel1 • ¬fin2, and ¬C1

1 ∧ C2;
5. (fin1 ∧ rea1) • inv2, and ¬C2

1 ∧ C2;
6. (fin1 ∧ rea1) • ¬fin2, and ¬C2

1 ∧ C2;
7. other restrictions are unknown.

In all cases, trig1 and trig2 hold at s′, and inv1 also hold at s′, if only rel1 or
fin1 with rea1 do not happen at this point, and there exists states s′1 and s′2 on
path π′ after s′ at which fin1 ∧ inv1 and rel1 ∨ rea1 hold respectively. Let all
restrictions of every case hold at s′ separately.
(1-2) In both restriction cases, B1 → ¬inv2, hence B1 → ¬A2.
(3-6) These cases describes inconsistency restrictions when release rel1 or fi-
nal fin1 with immediate reaction rea1 cancel invariant inv1 and contradict r2-
attributes. All these restrictions obviously imply B1 → ¬A2.
(7) Surprisingly, although we know that there exists states s′1 and s′2, we cannot
decide about inconsistency of rel1, fin1, and rea1 respective to neither inv2,
nor ¬fin2 because appearing rel2 may happen at any π′-path state between s′
and s′1/s′2. Formula that specify this appearance is ¬(F(rel1 ∨ (fin1 ∧ rea1)) ∧
(¬rel2U(rel1 ∨ (fin1 ∧ rea1)))). The negation of this formula could be the suf-
ficient condition for inconsistency restrictions combining rel1, fin1, rea1 with
inv2 and ¬fin2, but it is not static EDTL-formula and its checking requires the
description of model Mr1 .
(BB) B1 → ¬B2. B1 is satisfiable on path π′s′ . The following restrictions on
EDTL-attributes of r1 and r2 imply Ψ1 → ¬Ψ2:

1. inv1 • inv2, and C1 = ¬(C1
1 ∨ C2

1), and C2 = ¬((trig1 ∨ inv1 ∨ trig2) →
(rel2 ∨ (fin2 ∧ rea2)), where C1

1 = ¬((trig1 ∨ inv1 ∨ trig2) → rel1) and
C2

1 = ¬((trig1 ∨ inv1 ∨ trig2)→ (fin1 ∧ rea1));
2. rel1 • inv2, and ¬C1

1 ∧ C2;
3. (fin1 ∧ rea1) • inv2, and ¬C2

1 ∧ C2;
4. rel1 → fin2, rel1 • inv2, and ¬((rel1 ∨ fin2)→ (rel2 ∨ rea2));
5. rea1 → fin2, rea1 • inv2, and ¬((rea1 ∨ fin2)→ (rel2 ∨ rea2));
6. fin1 → fin2, fin1 • inv2, and ¬((fin1 ∨ fin2)→ (rel2 ∨ rea2));
7. fin1 → fin2, inv1 • del2, (inv1 ∨ fin1) • rel2, and (inv1 ∨ fin1) • rea2;
8. other restrictions are unknown.

In all cases, trig1 and trig2 hold at s′, and inv1 also hold at s′, if only rel1 or
fin1 with rea1 do not happen at this point, and there exists states s′1 and s′2 on
path π′ after s′ at which fin1 ∧ inv1 and rel1 ∨ rea1 hold respectively. Let (1)
all restrictions of cases 1–3 hold at s′, (2) all restrictions of cases 4-5 hold at s′2,
and (3) all restrictions of cases 6-7 hold at s′1.
(1-3) This cases are similar to the case (BA).
(4-6) This cases exploit the fact that inv2 must hold at the state where fin2
holds if only there is no release rel2 or reaction rea2. In cases 4 and 5, this state
is s′2, and in case 6, it is s′1.

Static Checking Consistency of Requirements 9

(7) In this case, similarly to case (AB-3), fin1 causes fin2 at state s′1, and in-
consistency of inv1 with del2 requires immediate release rel2 or reaction rea2,
but they are also inconsistent with inv1 ∨ fin1.
(8) We consider all possible restrictive combinations for attributes of require-
ments r1 and r2 which allow static inconsistency checking. Other restrictions
require the description of model Mr1 .

The restrictions on EDTL-attributes of r1 and r2 formulated above implies
unsatisfiability of Φr1 ∧ Φr2 in model Mr1 . Hence, if the requirements satisfy
these restrictions, our algorithm yields definite result of inconsistency checking.
Summarise these restrictions in the next section.

4 Procedure Compare

Our goal is to describe a function which solves if two EDTL-requirements (in)-
consistent using the attribute values of their patterns only. Let Compare(R1, R2)
be a function which input is patterns and output is answer from the set {con-
sistent, inconsistent, unknown}.

To compare the requirements, we use the following method. First, using the
results of the previous section, we define answers and their conditions of function
Compare for the most general case when every attribute of R1 and R2 has non-
constant value. For attribute constant values, we substitute them into the general
form of answer to get the answers and their conditions for these particular cases.

In the following definition of the outputs of Compare(R1, R2), we summarise
the restrictions on the attributes of requirement r2 which cause its inconsistency
with requirement r1. In this definition, conjunction of all cases of each output
marked by letters gives its necessary condition.

1. Compare(R1, R2) = inconsistent, if
(a) inv1 • inv2;
(b) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ (rel1 ∨ (fin1 ∧ rea1));
(c) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ (rel2 ∨ (fin2 ∧ rea2))).

2. Compare(R1, R2) = inconsistent, if
(a) ¬fin1 • inv2;
(b) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1);
(c) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ (rel2 ∨ (fin2 ∧ rea2)).

3. Compare(R1, R2) = inconsistent, if
(a) inv1 • ¬fin2;
(b) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ (rel1 ∨ (fin1 ∧ rea1));
(c) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel2).

4. Compare(R1, R2) = inconsistent, if
(a) ¬fin1 • ¬fin2;
(b) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1);
(c) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel2).

5. Compare(R1, R2) = inconsistent, if
(a) rel1 • inv2;
(b) (trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1;

10 N. Garanina et al.

(c) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ (rel2 ∨ (fin2 ∧ rea2)).
6. Compare(R1, R2) = inconsistent, if

(a) rel1 • ¬fin2;
(b) (trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1;
(c) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel2).

7. Compare(R1, R2) = inconsistent, if
(a) rel1 • rel2;
(b) (trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1;
(c) (trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel2.

8. Compare(R1, R2) = inconsistent, if
(a) inv1 → fin2;
(b) ¬fin1 • del2;
(c) (inv1 ∨ ¬fin1) • rel2;
(d) (inv1 ∨ ¬fin1) • rea2;
(e) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1).

9. Compare(R1, R2) = inconsistent, if
(a) ¬fin1 → fin2;
(b) inv1 • del2;
(c) (inv1 ∨ ¬fin1) • rel2;
(d) (inv1 ∨ ¬fin1) • rea2;
(e) ¬((trig1 ∨ inv1 ∨ ¬fin1 ∨ trig2)→ rel1).

10. Compare(R1, R2) = inconsistent, if
(a) (fin1 ∧ rea1) • inv2;
(b) (trig1 ∨ inv1 ∨ trig2)→ (fin1 ∧ rea1);
(c) ¬((trig1 ∨ inv1 ∨ trig2)→ (rel2 ∨ (fin2 ∧ rea2)).

11. Compare(R1, R2) = inconsistent, if
(a) (fin1 ∧ rea1) • ¬fin2;
(b) (trig1 ∨ inv1 ∨ trig2)→ (fin1 ∧ rea1);
(c) ¬((trig1 ∨ inv1 ∨ trig2)→ rel2).

12. Compare(R1, R2) = inconsistent, if
(a) rel1 → fin2;
(b) rel1 • inv2;
(c) ¬((rel1 ∨ fin2)→ (rel2 ∨ rea2)).

13. Compare(R1, R2) = inconsistent, if
(a) rea1 → fin2;
(b) rea1 • inv2;
(c) ¬((rea1 ∨ fin2)→ (rel2 ∨ rea2)).

14. Compare(R1, R2) = inconsistent, if
(a) fin1 → fin2;
(b) fin1 • inv2;
(c) ¬((fin1 ∨ fin2)→ (rel2 ∨ rea2)).

15. Compare(R1, R2) = inconsistent, if
(a) fin1 → fin2;
(b) inv1 • del2;
(c) (inv1 ∨ fin1) • rel2;
(d) (inv1 ∨ fin1) • rea2.

Static Checking Consistency of Requirements 11

16. Compare(R1, R2) = consistent, if
(a) inv1 → inv2;
(b) fin1 → fin2;
(c) del1 → del2;
(d) rea1 → rea2;
(e) rel1 → rel2;

17. Compare(R1, R2) = unknown, other cases.

All outputs above are based on results of Section 3 except case 16. In this case,
weakening every attribute of R1 in R2 implies satisfiability of r2 in every model
where r1 is satisfiable.

Outputs of Compare for the other combinations of attribute values of R1

and mutable attribute values of R2 can be found in [18].

5 Algorithm for checking consistency of EDTL-Patterns

Let a given set of requirements be presented as EDTL-patterns. The check-
ing consistency algorithm Consistency_Checker compares the requirements in
pairs using the function Compare. For each requirement the algorithm gener-
ates a list of inconsistent, consistent and undefined requirements. Note that the
inconsistency relation is not transitive. Using these lists, we can compile sets
of consistent requirements, as well as lists of requirements, whose consistency
should be further verified by stronger methods. The complexity of this algo-
rithm is quadratic with respect to the size of the set of requirements.

type Req :
struct {

pattern : array [6] of EDTL_formula; // 0-trig, ..., 5-rel
inconsistent : list of Req;
consistent : list of Req;
unknown : list of Req;

}

Consistency_Checker (reqs : array [n] of req){
for i = 1 .. n-2

for j = i+1 .. n
res = Decide(reqs[i], reqs[j]);
case (res) {

inconsistent : reqs[i].inconsistent.add(reqs[j]);
reqs[j].inconsistent.add(reqs[i]);

consistent : reqs[i].consistent.add(reqs[j]);
reqs[j].consistent.add(reqs[i]);

unknown : reqs[i].unknown.add(reqs[j]);
reqs[j].unknown.add(reqs[i]);

}
}

12 N. Garanina et al.

First, the function Decide checks comparability of requirements (trig1 →
trig2 or trig2 → trig1), which takes exponential time with respect to the size of
the triggers. Then it tries if the semantics of incoming requirements is true or
false with partial function Compute_semantics which substitute the attribute
values to LTL semantic formula, and returns ‘true’/‘false’ iff the result of the
substitution is identically true or false, and ‘unknown’ in other cases. The time
complexity of this function is linear with respect to the size of the requirements.
Its definition is trivial and out of the scope of this paper. If there are the cases
true or false, it returns values to Consistency_Checker immediately. If not, it
calls function Compare which compute if the requirements inconsistent.

Decide (pat1, pat2){
if !imply(pat1[0], pat2[0]) && !imply(pat2[0], pat1[0]) &&

!pat1[0] && !pat2[0]
then return unknown;

res = Compute_semantics(pat1);
if res = ’true’ then return unknown;
if res = ’false’ then return inconsistent;
res = Compute_semantics(pat2);
if res = ’true’ then return unknown;
if res = ’false’ then return inconsistent;
if imply(pat1[0], pat2[0]) then return Compare(pat1, pat2);
if imply(pat2[0], pat1[0]) then return Compare(pat2, pat1);

}

The function Compare is based on its definition given the previous section. For
example, the following part of the code of Compare models case (13) of this
definition. The function Compute(frm) returns true iff frm is identically true
formula. The definition of this function is based on standard Boolean rules and
Definition 3. The complexity of this function is exponential with respect to the
size of the attributes of requirements because it solves SAT problem.

Compare (pat1, pat2){
...
// case 13
if Compute((pat1[4] -> pat2[2]) &&

!(pat1[4] && pat2[1]) &&
!((pat2[2]||pat1[4])->(pat2[4]||pat2[5])))

then return inconsistent;
...
return unknown;

}

Using the mentioned above time complexities of the algorithm and its func-
tions, we state the following

Theorem 1. There exists the algorithm partially solving the checking inconsis-
tency problem for EDTL-requirements which takes quadratic time with respect to

Static Checking Consistency of Requirements 13

the size of the set of requirements and exponential time with respect to the size
of the requirements.

Standard automata-based satisfiability checking algorithms for LTL-formula ϕ
take exponential time Ts(ϕ) with respect to the size of the checking formula.
Roughly, if the size of every EDTL-attribute of each EDTL-requirement is a
then Ts(Φr1 ∧ Φr2) ≥ 220∗a. The time complexity Td(r1, r2) of the most expen-
sive function Decide is the sum of complexities of the first line checking and
the Compare function: Td(r1, r2) ≤ 22∗a + 22∗a+4 + 27∗a+5. Definitely, Ts is al-
ways greater than Td for a pair of EDTL-requirements independently their size4.
Hence, our simple checking algorithm can be used before more powerful and
complex automata-based checking inconsistency.

6 Conclusion

In this paper, we propose the method and algorithm for checking the consistency
of requirements presented as EDTL-patterns. This method uses LTL semantics
of requirements. It analyses key cases for combinations of pattern attribute val-
ues. We present an exhaustive description of these cases to determine that two
requirements are not consistent if the attribute values of their patterns are not
Boolean constants. For other attribute values, the method suggests substitut-
ing them into the described inconsistency conditions to obtain the conditions
corresponding to these values. We describe the pseudocodes of algorithms that
implement the proposed method. The results of the algorithm can be used to
compile sets of consistent requirements, as well as lists of requirements for con-
sistency checking by stronger methods. The complexity of the main algorithm is
quadratic with respect to the size of the set of requirements. The complexity of
the comparison function used in the algorithm is exponential with respect to the
size of the attributes. Nevertheless, we show that the overall complexity of our
algorithm is much better than the complexity of automata-based satisfiability
checking algorithms for LTL-formulas. Hence, incompleteness of results of our
algorithm is balanced by its relatively low complexity.

This study is a part of theoretical and practical research on the development
and verification of process-oriented control software [1,9,16]. The results of the
paper will be used in a general approach to checking the consistency of EDTL-
requirements. For this approach, we currently develop methods that explicitly
use the temporal semantics of requirements. One of them is the construction
of equivalent finite automata for semantics of EDTL-requirements and checking
their consistency.

References

1. Anureev, I.S. Operational Semantics of Annotated Reflex Programs. Aut. Control
Comp. Sci. 54, 719–727 (2020). https://doi.org/10.3103/S0146411620070032

4 For example, if a = 1, then Ts ≥ 1048576 and Td = 1332.

14 N. Garanina et al.

2. Autili, M., Grunske,L., Lumpe, M., Pelliccione,P., Tang, A. “Aligning Qualitative,
Real-Time, and Probabilistic Property Specification Patterns Using a Structured
English Grammar", IEEE Transactions on Software Engineering, vol.41, no.7, pp.
620–638, 2015.

3. V. Bashev, I. Anureev and V. Zyubin, "The Post Language: Process-Oriented
Extension for IEC 61131-3 Structured Text," 2020 International Russian Au-
tomation Conference (RusAutoCon), Sochi, Russia, 2020, pp. 994-999, doi:
10.1109/RusAutoCon49822.2020.9208049.

4. Clarke, E.M., Henzinger, Th.A., Veith, H., Bloem, R. (Eds.): Handbook of Model
Checking. Chapter 18. Springer International Publishing (2018).

5. Dwyer,M.B., Avrunin,G.S., Corbett, J.C. “Patterns in property specifications for
finite-state verification", in Proc. of the 21st Int. Conf. on Software Engineering,
IEEE Computer Society Press, 1999, pp. 411–420.

6. N. Garanina, I. Anureev, E. Sidorova, D. Koznov, V. Zyubin, and S. Gorlatch. An
Ontology-based Approach to Support Formal Verification of Concurrent Systems
// Formal Methods. FM 2019 International Workshops. LNCS Volume 12232, pp.
114-130 https://doi.org/10.1007/978-3-030-54994-7_9

7. N. Garanina and O. Borovikova, "Ontological Approach to Checking Event Consis-
tency for a Set of Temporal Requirements," 2019 International Multi-Conference
on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk,
Russia, 2019, pp. 0922-0927, doi: 10.1109/SIBIRCON48586.2019.8958119.

8. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 3576, pp. 98–111. Springer, Hei-
delberg (2005)

9. Liakh T.V., Rozov A.S., Zyubin V.E.: Reflex Language: a Practical Notation for
Cyber-Physical Systems. System Informatics 12, 85–104 (2018)

10. Mondragon, O., Gates, A.Q., Roach, S. “Prospec: Support for Elicitation and For-
mal Specification of Software Properties", in Proc. of Runtime Verification Work-
shop of Electronic Notes in Theoretical Computer Science, 2014, vol. 89, pp. 67–88.

11. Salamah, S., Gates, A.Q., Kreinovich, V. “Validated patterns for specification of
complex LTL formulas", Journal of Systems and Software, 85(8), pp.1915–1929,
2012.

12. Simko, V., Hauzar, D., Bures, T., Hnetynka, P., Plasil, F. “Verifying Temporal
Properties of Use-Cases in Natural Language", in Proc. of Formal Aspects of Com-
ponent Software. FACS 2011., LNCS, Springer, Berlin, 2012, vol. 7253, pp.350–367.

13. Smith, M., Holzmann, G., Etessami, K. “Events and Constraints: A Graphical
Editor for Capturing Logic Requirements of Programs", in Proc. of 5 IEEE Inter-
national Symposium on Requirements Engineering, Aug. 27-31, 2001, pp. 14–22.

14. Wong, P.Y.H., Gibbons, J. “Property Specifications for Workflow Modelling", in
Proc. of Integrated Formal Methods (IFM 2009), LNCS, Springer-Verlag: Berlin,
vol. 5423, pp. 166–180, 2009.

15. Yu, T.P., Manh, J. Han et al. “Pattern based property specification and verification
for service composition", in Proc. of 7th International Conference on Web Infor-
mation Systems Engineering (WISE), LNCS, Springer-Verlag: Berlin, vol. 4255,
pp. 156–168, 2006.

16. Vladimir Zyubin, Igor Anureev, Natalia Garanina, Sergey Staroletov, Andrei Ro-
zov, and Tatiana Liakh. Event Driven Temporal Logic for Control Software Re-
quirements // Proc. Of 9th IPM International Conference on Fundamentals of
Software Engineering (FSEN 2021), LNCS, Springer. Accepted to publication.
http://fsen.ir/2021/Programme.aspx

Static Checking Consistency of Requirements 15

17. Argosim Homepage, www.argosim.com. Last accessed 20 Apr 2021
18. Garanina, N.: EDTL: Checking consistency tables.

https://github.com/GaraninaN/CheckEDTL (2021) Accessed 20 Apr 2021

