
2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

RIDE: Theia-based web IDE for the Reflex
language

Ilya Gornev
Institute of Automation and Electrometry of the Siberian Branch

of the RAS
Novosibirsk, Russia

Tatiana Liakh
Institute of Automation and Electrometry of the Siberian Branch

of the RAS
Novosibirsk, Russia

Abstract—The process-oriented programming language
Reflex is a programming language for cyber-physical systems’
(CPS) control software. It is based on the formal hyperprocess
model. Reflex has proved effective in industrial projects. But
using Reflex is difficult due to the lack of IDE for Reflex
programs. In this paper, we develop cloud desktop IDE for the
Reflex language — RIDE. Modularity is the main principle of
the RIDE architecture. It meets the needs of CPS software
development process and allows extending the IDE
functionality. Reflex IDE extensions may provide various
functionalities, such as a graphical representation of the Reflex
code, translators to other programming languages, debugging
and verification techniques.

Keywords—process-oriented programming, cloud IDE, web,
cyber-physical systems, control software

I. INTRODUCTION1

The programming language Reflex [1] suggests to
develop control CPS software in process-oriented style. A
CPS implies interaction of software with the physical
environment [2]. Such systems are ubiquitous; for example,
industrial control systems and the industrial internet of
things. CPS control programs have specific properties, such
as:

1. Openness. CPS control software interacts with an
environment (external physical world) through sensors and
actuators.

2. Event-driven behaviour. Control software reactions
depends on physical environment events (facility events and
operators commands).

3. System operation time is not limited.
4. Synchronism. Control software reacts dynamically

on events on a facility.
5. Logical parallelism. Control software structure

reflects physically parallel processes at a facility.

The Reflex language allows users to take into account
the specifics of cyber-physical systems and speed up the
development of CPS control software. The C-like syntax
promises easy learning for programmers. Reflex has proved
effective in industrial projects [3].

Despite advantages, no specialized IDE for the Reflex
language is provided. Thus, the paper describes the
development of the Reflex specialized IDE named RIDE.

Modern IDEs provide functionality to decrease the
coding required time. Such functionality simplifies coding

1 This work was supported by the Russian Ministry of Education and
Science, project no. AAAA-A19-119120290056-0.

procedure, for example, syntax highlighting,
autocompletion, code generation, etc. RIDE must include
code editor functionality oriented on the Reflex syntax.

Modern IDEs integrate different tools, for example
compilers and translators for different platforms, or tools for
collaborative development (Visual Studio Live Share
extension [4], Teletype package for Atom [5]). Current trend
is to support extensibility and allow developers to create and
integrate custom extensions. For this purpose, IDEs often
incorporate modularity principle in their architecture,
distinguishing core modules from plug-ins, and provide API
for custom users' modules. Such IDEs are Visual Studio [6]
and Visual Studio Code [7], Eclipse IDE [8], IntelliJ IDEA
[9], etc. Plug-ins must have access to communication
channels or information about the user's code. The best way
to package this information is to build an abstract syntax
tree (AST) of the code. Thus, the RIDE architecture must be
extensible, and for this purpose it must divide core modules
from the domain-specific modules (DSMs), and provide the
ability to add new DSMs.

At last, modern IDEs and other applications often use
web-format and allow browser access, for example GitLab
Web IDE [10] and GitPod [11]. In this way, new users can
try them without long download and installation. To attract
new programmers to process-oriented programming and the
Reflex language, we decided to develop RIDE in two
versions: desktop version and web version. The web version
will simplify access, and the desktop version ensures offline
usage for users with slow internet connection.

Therefore, Reflex IDE must meet the following
requirements:

1. The basic RIDE functionality must include the
code editor oriented for the Reflex syntax and the
parser that generates an abstract syntax tree (AST)
of the Reflex code.

2. The RIDE architecture must divide the core
module from the domain-specific modules
(DSMs). The DSM support ensures the
extensibility of the RIDE functionality.

3. The RIDE core must provide access to the AST for
all DSMs.

4. Including new DSMs to RIDE must be possible
without changing the source code of the RIDE core
module.

5. RIDE must be provided in two versions: desktop
version and web version.

978-1-6654-1498-2/21/$31.00 ©2021 IEEE

2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

6. To test the RIDE functionality and the DSM
support, the DSM that translated Reflex code to C
code for the Arduino platform must be used.

The section II covers frameworks analysis; the section
III describes the implemented architecture and the result
user interface; the section IV outlines further development.

II. IDE FRAMEWORKS SURVEY

We analysed the IDE development frameworks that
allow implementing the Reflex language as a DSL
(domain-specific language). Such frameworks provide some
features for DSLs, for example, syntax highlighting and
autocompletion. Also, the RIDE requirements include both
desktop and web versions and modular architecture.
Therefore, we were looking for frameworks that provide
ability to create both versions from the same source code
and simplify creating modular structure.

The most widespread frameworks for DSL development
are JetBrains MPS [12] and Xtext [13]. Although both are
DSL development tools, their usage differs. MPS provides a
projection tool, so it saves the code not as a text, but as
some model instead. Therefore, DSL implemented via
JetBrains MPS is not compatible with other text editors and
tools. On the other hand, Xtext framework is well
documented and makes it possible to incorporate
implemented DSL to other tools. Moreover, Xtext artifacts
are compatible with the Language Server Protocol (LSP), so
it can be used in web applications. To implement the Reflex
language, the Xtext framework was chosen. The Eclipse
Foundation [14] owns Xtext, so the natural choice of means
is to use other known Eclipse projects: Eclipse RCP [15] for
the desktop version of RIDE and Eclipse RAP [16] for the
web version. These projects suggest compatibility with
Xtext. Disadvantages of this solution are its complexity and
poor documentation. These are old, not developing
frameworks with passive community. Therefore, we decided
to abandon them.

Another new Eclipse project, Eclipse Theia [17], shows
several advantages. Eclipse Theia is a web-IDE
development framework, while eclipse RCP is built for
general-purpose applications development. Theia better
suits our goal and is easier to learn. Theia meets all the
requirements and it allows the integration of the Xtext
artifacts in the project. The desktop version of the
application may be built from the same source code with the
Electron framework [18]. Lastly, Theia project continues
developing and its community is active.

Due to the advantages, we chose Xtext to implement the
Reflex language, Eclipse Theia for the web-IDE
development, and Electron for the desktop version.

III. ARCHITECTURE AND IMPLEMENTATION

A. Architecture
Theia architecture consists of extensions [19].

Extensions may be divided by two categories: frontend (run
on the client side), and backend (run on the server side).
Backend Theia extensions may communicate with the server
operating system and other programs.

Earlier the Reflex language was implemented with the
Xtext framework in the form of an Eclipse plug-in [20].
From this plug-in, we build the separate language server

(LS) using the Gradle system [21]. Theia backend extension
communicates with the LS via JSON-RPC protocol [22],
and provides the Reflex language functionality to the editor
when it edits the file with the *.rcs extension.

Different Reflex applications demand translation of
Reflex code to different platform languages. To simplify
new translators' contributions, we provided a mechanism for
integration of simple DSMs (domain specific modules). A
simple DSM takes the abstract syntax tree (AST) of the
Reflex code, and returns a string to be shown to user. In case
of translator, a DSM would generate a file with the target
language code and return a path to the file.

Each DSM needs the AST of the user’s code. The
extension ast-service provides AST to other modules.
It gets the AST from the language server, serializes the AST,
and sends it to the DSM via the dsm-wrapper.

The dsm-wrapper extension allows the integration of
new DSMs. The dsm-wrapper’s client part enhances the
user interface with buttons for integrated DSMs. Its server
part runs and manages DSMs’ processes.

Fig. 1 demonstrates how the dsm-wrapper is built in
the RIDE architecture. Each domain specific module must
be implemented as a Spring application [23]. These Spring
applications are packed and run in Docker containers [24].
When DSM Wrapper Server gets commands from DSM
Wrapper Client, it communicates with DSMs in Docker
containers via HTTP protocol. The DSM Wrapper Client is
connected to commands in the tool menu of the Theia user
interface. For each DSM a new command is contributed.

Fig. 1. The DSM integration in the architecture.

B. User Interface
Fig. 2 demonstrates RIDE syntax highlighting for the

Reflex language. The implementation of the syntax

2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

highlighting must be quick, for that reason the highlighting
is not provided by the language server. Instead, syntax
highlighting is implemented on the client side (no HTTP
transmission involved). For quick Reflex code analysis, we
used TextMate grammars [25].

Fig. 2. RIDE syntax highlighting.

Fig. 3. The project navigation area, and the DSM menu with one DSM
command.

Fig. 3 demonstrates the project navigation area, where
user can see and search through project files. The DSM

menu with the DSM commands is located in the context
menu of the files.

Fig. 4 shows how the user sees syntax errors. The
information for the code editor functionality, including
autocompletion and syntax check, comes from the language
server on the backend via the HTTP protocol.

Fig. 4. Messages about syntax error.

IV. FURTHER DEVELOPMENT

The further development of RIDE includes three
directions:

● Users management, authorization, and organizing
users’ workspaces using Eclipse Che.

● Development and integration of DSMs for new
ways of editing Reflex programs, for example,
interactive activity diagrams.

● The functionality for debugging and verification of
the Reflex programs, ability to describe and
emulate the controlled object.

V. CONCLUSION

The paper describes the development of the web-IDE
specialized for the process-oriented language Reflex. RIDE
project represents the result of the work, it may be run as a
web-service or a cross-platform desktop application. RIDE
allows to write Reflex code with syntax highlighting and
autocompletion. The user can refactor Reflex code and
analyse it via tree view or the “go to definition” function.
RIDE automatically translates Reflex code to C code. The
architecture of the project allows implementing more
translators or other domain-specific modules in future.

To create RIDE, we analysed the specificity of the CPSs
control algorithms, stated the requirements for the Reflex
IDE and the requirements for the means. The analysis of the
means for the IDE development and the DSL
implementation showed the optimal frameworks for the

2021 IEEE 22nd INTERNATIONAL CONFERENCE OF YOUNG PROFESSIONALS IN ELECTRON DEVICES AND MATERIALS (EDM)

RIDE project. The results may be used for developing other
process-oriented IDEs.

ACKNOWLEDGMENT

We thank the JetBrains Foundation for the charitable
support of our research activity.

REFERENCES

[1] I. Anureev, N. Garanina, T. Liakh, A. Rozov, and V. Zyubin,
“Towards safe cyber-physical systems: the Reflex language and its
transformational semantics,” IEEE International Siberian Conference
on Control and Communications (SIBCON-2019) Tomsk, April 2019

[2] W. M. Taha, AE. M. Taha, and J. Thunberg, Cyber-Physical Systems:
A Model-Based Approach. Cham: Springer, 2021.

[3] T. Liakh, V. Zyubin, M. Sizov “The experience of the Reflex
language application for the automatization of the Large Solar
Vacuum Telescope [Opyt primeneniya yazyka Refleks pri
avtomatizatsii Bolshogo solnechnogo vakuumnogo teleskopa],” (in
Russian), Industrial control systems and controllers [Promyshlennye
ASU i kontrolery], vol. 7, pp. 37-43, 2016.

[4] "Visual Studio Live Share | Visual Studio", Visual Studio. [Online].
Available: https://visualstudio.microsoft.com/ru/services/live-share/.
[Accessed: 19- Feb- 2021].

[5] "Code together in real time in Atom", teletype.atom.io. [Online].
Available: https://teletype.atom.io/. [Accessed: 19- Feb- 2021].

[6] "Visual Studio IDE, Code Editor, Azure DevOps, & App Center -
Visual Studio", Visual Studio. [Online]. Available:
https://visualstudio.microsoft.com. [Accessed: 19- Feb- 2021].

[7] "Visual Studio Code - Code Editing. Redefined",
Code.visualstudio.com. [Online]. Available:
https://code.visualstudio.com/. [Accessed: 09- Feb- 2021].

[8] "Eclipse IDE 2020-12 | The Eclipse Foundation", Eclipse.org.
[Online]. Available: https://www.eclipse.org/eclipseide/. [Accessed:
09- Feb- 2021].

[9] "IntelliJ IDEA: The Capable & Ergonomic Java IDE by JetBrains",
JetBrains. [Online]. Available: https://www.jetbrains.com/idea/.
[Accessed: 19- Feb- 2021].

[10] "DevOps Platform Delivered as a Single Application", GitLab.
[Online]. Available: https://about.gitlab.com/. [Accessed: 09- Feb-
2021].

[11] "Gitpod - Dev environments built for the cloud", Gitpod.io. [Online].
Available: https://www.gitpod.io/. [Accessed: 09- Feb- 2021].

[12] "MPS: The Domain-Specific Language Creator by JetBrains",
JetBrains. [Online]. Available: https://www.jetbrains.com/mps/.
[Accessed: 09- Feb- 2021].

[13] S. Efftinge and M. Spoenemann, "Xtext - Language Engineering
Made Easy!", Eclipse.org. [Online]. Available:
https://www.eclipse.org/Xtext/. [Accessed: 09- Feb- 2021].

[14] M. Milinkovich, "Eclipse Foundation | The Eclipse Foundation",
Eclipse.org, 2005. [Online]. Available:
https://www.eclipse.org/org/foundation/. [Accessed: 09- Feb- 2021].

[15] "Rich Client Platform - Eclipsepedia", Wiki.eclipse.org. [Online].
Available: https://wiki.eclipse.org/Rich_Client_Platform. [Accessed:
09- Feb- 2021].

[16] "Remote Application Platform (RAP)", Eclipse.org. [Online].
Available: https://www.eclipse.org/rap/. [Accessed: 09- Feb- 2021].

[17] "Theia - Cloud and Desktop IDE Platform", Theia-ide.org. [Online].
Available: https://theia-ide.org/. [Accessed: 09- Feb- 2021].

[18] "Electron | Build cross-platform desktop apps with JavaScript,
HTML, and CSS.", Electronjs.org. [Online]. Available:
https://www.electronjs.org/. [Accessed: 09- Feb- 2021].

[19] "Theia - Cloud and Desktop IDE Platform", Theia-ide.org. [Online].
Available: https://theia-ide.org/docs/authoring_extensions. [Accessed:
09- Feb- 2021].

[20] A. Bastrykina, “Refactoring of the Reflex translator based on the
automatic parser generation [Refaktoring translyatora yazyka Refleks
na osnove avtomaticheskoy parser-generatsii],” (in Russian),
Materials of the 58-th International Scientific Student Conference
ISSC-2020 [Materialy pyatdesyat vosmoy Mezhdunarodnoy
Nauchnoy Studencheskoy Konferentsii MNSK-2020], Novosibirsk, p.
138, 2020.

[21] "Gradle Build Tool", Gradle. [Online]. Available: https://gradle.org/.
[Accessed: 09- Feb- 2021].

[22] "JSON-RPC", Jsonrpc.org. [Online]. Available:
https://www.jsonrpc.org/specification. [Accessed: 09- Feb- 2021].

[23] "Spring makes Java simple.", Spring. [Online]. Available:
https://spring.io/. [Accessed: 09- Feb- 2021].

[24] "Empowering App Development for Developers | Docker", Docker.
[Online]. Available: https://www.docker.com/. [Accessed: 09- Feb-
2021].

[25] "Language Grammars — TextMate 1.x Manual", Macromates.com.
[Online]. Available:
https://macromates.com/manual/en/language_grammars. [Accessed:
09- Feb- 2021].

