
Using Process-Oriented Structured Text
for IEC 61499 Function Block

Specification

Vladimir Zyubin(B) and Andrei Rozov

Institute of Automation and Electrometry, Acad. Koptyuga prosp. 1,
630090 Novosibirsk, Russia

{zyubin,rozov}@iae.nsk.su

Abstract. This paper deals with leveraging the IEC 61499 Function
Blocks with the poST language. The poST language is a process-oriented
extension of the IEC 61131-3 Structured Text (ST) language. The lan-
guage targets specifying stateful behavior of PLC-based control software.
The main purpose of our contribution is to provide coherence of the PLC
source code with technological description of the plant operating proce-
dure. The language combines the advantages of FSM-based programming AQ1

with conventional syntax of the ST language and can be easily adopted
by the community. The poST language assumes that a poST-program is a
set of weakly connected concurrent processes. Each process is specified by
a sequential set of states. The states are specified by a set of the ST con-
structs, extended by TIMEOUT operation, SET STATE operation, and
START/STOP/check state operations to communicate with other pro-
cesses. The paper describes the basics of the poST language, design con-
structs, and demonstrates usage of the poST language by developing con-
trol software for a wheel-chair elevator, and discusses the poST language
over the control software implementation in Execution Control Chart.

Keywords: PLC languages · IEC 61499 · IEC 61131-3 · Control
software development · Process-oriented programming · ECC

1 Introduction and Motivation

The ongoing transition to Industry 4.0 means a dramatic increase in complexity
and use of embedded and cyber-physical systems in our lives. This demands
a reassessment of the tools used for design and development of such systems.
Behavior of a cyber-physical system is determined by the control system, and
behaviour of control system is specified by software. Thus the models, methods
and languages employed in development of control software need to be revised.

The majority of automation professionals predict that the tooling for Indus-
try 4.0 software will be based on IEC 61131-3 and its evolution to IEC 61499.

This work was supported by the Russian Ministry of Education and Science, project
no. AAAA-A19-119120290056-0.

c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): MEDI 2021, CCIS 1481, pp. 1–11, 2021.
https://doi.org/10.1007/978-3-030-87657-9_17

A
ut

ho
r

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87657-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-87657-9_17

2 V. Zyubin and A. Rozov

There is a heated debate on the pros and cons of these standards in research
papers. On the one hand, it is stated that IEC 61131-3 [1], developed in the
early 90s and having known shortcomings, needs serious refactoring [2]. On the
other hand, there are active attempts to modernize IEC 61131-3 by the IEC
61499 standard [3]. A third side argues that the proposed changes are not fun-
damental and are rather cosmetic in nature [4]. Additionally, it should be noted
that possibility of reconfiguring and porting systems to distributed platforms of
various topologies is initially declared in IEC 61499, and it is undoubtedly an
essential attribute of the Industry 4.0 concept. IEC 61499 defines a program as
a collection of interconnected and communicating function blocks. The exter-
nal interface for the blocks is set up in data connections and event connections
sections. A function block encapsulates the desired functionality which is speci-
fied by algorithms implemented in IEC 61131-3 languages. These algorithms are
activated depending on the incoming events.

IEC 61499 therefore allows an automata-based description of system behav-
ior. This is directly stated by the standard authors.

The effectiveness of automata-based approaches has long been recognized by
the time IEC 61131-3 was submitted. Nevertheless, such mechanisms were not
adopted until IEC 61499.

This evokes mixed thoughts. No doubt, it is a significant event for the main-
stream practice of industrial automation. And yet it only happened decades after
the adoption of IEC 61131-3. Besides, there is a perception that the standard
does not fully take account of the common practices in automaton programming.

At implementation level, the behavior of function blocks is specified in the
Execution Control Charts section with the Execution Control Chart (ECC) lan-
guage. An ECC is roughly equivalent to a Moore-type state machine [5]. It
monitors the input events and, based on the current state it executes a certain
part of the encapsulated functionality. ECC is a graphical notation which leads
to a possibility of ambiguous interpretation.

The order of ECC transitions’ evaluation follows their order in textual XML-
based representation of the FB. However, in graphical representation no hints
provided to determine the order. This can result in two ECCs looking identically,
but producing completely different reactions [5]. Also [4] lists such examples and
argues that one of the most important reasons the industry has not yet adopted
this standard is confusion over the execution semantics of the IEC61499 FB
model.

The rest of the paper has the following structure: in Sect. 2, we give a basics
of poST languages; in Sect. 3, we present a wheelchair lift as an example for
control software specification; in Sect. 4, we describe control software structure;
in Sect. 5, we illustrate using poST for FB specification; and in Sect. 6, we discuss
the result.

2 Introduction to PoST

To address the restrictions and challenges in development of present-day
complex control software, the process-oriented programming (POP) has been

A
ut

ho
r

Pr
oo

f

Using Process-Oriented Structured Text 3

suggested in [6]. Process-oriented programming (POP) involves specifying con-
trol software with a set of concurrently running processes. Internally the pro-
cesses have a state-machine-like structure and are equipped with operations for
managing time intervals and inter-process communication. Concurrent behavior
of the system is arranged via consequent execution of active process states on
each program cycle. Compared to other known state-machine-based approaches,
such as CSP [7], Input/Output Automata [8], Harels State-charts [9], Hybrid
Automata [10], Esterel [11], Calculus of Communicating Systems [12], and their
extensions [13,14], the POP approach combines system concurrency on the global
scale with local linearity of behavior within each process. POP provides a con-
ceptual basis for multiple domain-specific programming languages (DSLs) that
are intended for natural control software specification.

Within this paradigm new C-like languages Reflex and IndustrialC [15,16]
have been developed. The Reflex language targets PC-based control soft-
ware for large-scale industrial applications, while IndustrialC is tailored for
microcontroller-based embedded systems.

As practice shows, the Reflex language can be successfully used in industrial
applications and offers a number of significant advantages in control software
programming [17–19]. However, its widespread use in practice is hindered by
the conservative nature of the domain. The developer community tends to be
wary of introducing any new emerging technology to the process. Historically,
the majority of control software is still implemented within the so called PLC-
approach, that is based on the IEC 61131-3 languages IEC 61131-3 [1], and PLC
manufacturers are reluctant to deviate from this standard.

In order to face this challenge we proposed to adapt the process-oriented
approach for the ST procedural programming language in the same way as it
was done for the C language in case of Reflex. The process-oriented extension of
ST was called the poST language [20].

The poST language can therefore be of particular interest to the PLC com-
munity as it extends the Structured Text language from IEC 61131-3. The addi-
tional attractiveness of the poST language is due to the wide popularity of the
ST language. According to the CoDeSys GmbH (former 3S-SmartSoftware Solu-
tions GmbH), the ST language is regularly used by up to 70 % of users, and the
number is constantly growing [21].

The poST language combines advantages of the process-oriented paradigm
with conventional syntax of the ST language and can be easily adopted by the
PLC community. The poST language assumes that a poST-program is a set
of weakly connected concurrent processes, structurally and functionally corre-
sponding to the technological description of the plant. Each process is specified
by a set of states. The states are specified by a sequence of the ST constructs,
extended by TIMEOUT operation, SET STATE operation, and START/STOP/check state
operations to communicate with other processes. Apart from these operators, the
poST language follows the syntax and semantics of ST.

For the poST language we have already developed an Eclipse-based IDE [22],
including a parser and syntax-directed editor. Code generation modules for the

A
ut

ho
r

Pr
oo

f

4 V. Zyubin and A. Rozov

C and ST languages have been implemented. The generated ST-code can be
automatically converted in the PLCopen XML Exchange format [23], which
makes integration with the IEC 61131-3 tools easier. The approach assumes
that the generated code will be translated to executable form and uploaded to
the target platform with an existing C or IEC 61131-3 toolchain.

3 Wheelchair Lift Example

To demonstrate the approach, we choose the task of automating a lifting platform
for low-mobility users (Fig. 1).

The lift is an alternative to a ramp and it is intended to overcome vertical
barriers.

The cyber-physical diagram (Fig. 2) considers the system as three interact-
ing components. The lift user acts as Environment. The lift acts as Plant. Con-
troller defines the behavior of the system in accordance with the Reflex program.
The user can press the external and internal call buttons as well as open and
close the doors. The call buttons (up call, down call, up call, down call) and
lift doors (top door closed, bot door closed) are used as Controls. LED indicators
(up call led, down call led, up call led, down call led) are used to signal unhan-
dled calls. The controller monitors the states of the controls and floor sensors
(on top floor and on bot floor). Using the values of these inputs, the controller
generates control signals (up and down) to the lift movement motor and controls
the LED indicators. Turning on the motor causes the lifting platform to move
between floors.

Fig. 1. Wheelchair lift for users with limited mobility

The control program includes the states of pressing each of the buttons,
platform movement in both directions, and waiting for the end of a movement
or a new command.

The requirements we use to design poST-program are formulated in natural
language:

A
ut

ho
r

Pr
oo

f

Using Process-Oriented Structured Text 5

Fig. 2. Wheelchair lift cyber-physical diagram

– The simultaneous appearance of up and down signals is prohibited.
– Platform movement is only possible with closed doors.
– The movement begins after pressing one of the call buttons.
– In the absence of control commands for 20 s, the lift should be automatically

moved to the lower floor.

4 Software Design and Implementation in PoST

The process diagram (Fig. 3) depicts the poST-program structure. Initially, the
Initialization process deploys the control algorithm. It starts the Auxiliary pro-
cesses and the Motion process. Then it stops itself. The Auxiliary processes
(the xxx call Latch processes) light up the LEDs when the user releases the
corresponding call buttons and turns them off when the lift arrives at the corre-
sponding floor. In accordance with the requests and the state of the sensors, the
Motion process starts the go up or go down processes. After starting a process,
the Motion process controls its completion (transition to the inactive state).

Each latch process has two local variables and two states. The local variables
store previous values of the top_call and top_door_closed signals and are used to
detect the rising and falling edges. In the initial state the process sets the starting
values of its local variables. In its second and main state the process monitors the

A
ut

ho
r

Pr
oo

f

6 V. Zyubin and A. Rozov

Fig. 3. Wheelchair lift process diagram

button press and door opening events via top_calland top_door_closed signals.
On the button press event it sets the top_call_LED signal. On the door open-
ing event the process turn off the LED. The latch processes (top_call_Latch,
bot_call_Latch, up_call_Latch, down_call_Latch) differ only in variables
(Listing 1).

PROCESS top_call_Latch
VAR

prev_in : BOOL;
prev_out : BOOL;

END_VAR
STATE init

prev_in := NOT top_call;
prev_out := top_door_closed ;
SET NEXT;

END_STATE
STATE check_ON_OFF LOOPED

IF top_call AND NOT prev_in THEN
top_call_LED := TRUE;

END_IF
IF NOT top_door_closed AND prev_out THEN

top_call_LED := FALSE;
END_IF
prev_in := call0;
prev_out := open0;

END_STATE
END_PROCESS

Listing 1. Latch process

The flowchart (Fig. 4) shows operation of the Motion process. Listing 2 rep-
resents the Motion process in poST.

A
ut

ho
r

Pr
oo

f

Using Process-Oriented Structured Text 7

Fig. 4. Motion process flowchart

PROCESS Motion (* motion *)
STATE check_command

IF (bot_call_LED) THEN
START PROCESS go_down;
SET STATE check_stop;

ELSIF (down_call_LED) THEN
START PROCESS go_down;
SET STATE check_stop;

ELSIF (top_call_LED) THEN
START PROCESS go_up;
SET STATE check_stop;

ELSIF (up_call_LED) THEN
START PROCESS go_up;
SET STATE check_stop;

END_IF
TIMEOUT (#T20s) THEN

START PROCESS go_down;
SET STATE check_stop;

END_TIMEOUT
STATE check_stop

IF ((PROCESS go_down IN STATE INACTIVE)
AND (PROCESS go_up IN STATE INACTIVE)) THEN
RESTART; // set the initial state

END_IF
END_STATE

END_PROCESS

Listing 2. Motion process

Code in Listing 3 defines the behavior of the go_up process. The process waits
for both top and bottom doors to be closed, before setting for upward motion.
The process stops once the lift reaches the top floor.

A
ut

ho
r

Pr
oo

f

8 V. Zyubin and A. Rozov

PROCESS go_up
STATE motion

IF (top_door_closed AND bot_door_closed) THEN
up := TRUE;

END_IF
IF (on_top_floor) THEN

up := FALSE;
STOP;

END_IF
END_STATE

END_PROCESS

Listing 3. go up process

5 Conceptual Implementation Within IEC 61499

Conceptually (Fig. 5), the algorithm above can be implemented with a single
reduced function block with one Event Input invoking the algorithm specified in
poST.

Fig. 5. Process-oriented function block

Fig. 6. ECC of process-oriented function block

Figure 6 depicts the internal structure of such a reduced function block.
This approach to implementation allows for the poST algorithm to be split

into multiple function blocks. These can then be mapped unto multiple com-
puting platforms thus enabling distributed control. Communication between the

A
ut

ho
r

Pr
oo

f

Using Process-Oriented Structured Text 9

parts of the algorithm executing on separate PLCs can be organized using the
IEC 61499 Virtual Bus concept, as seen on Fig. 7 and would primarily be pre-
sented by interaction between processes.

Fig. 7. Distributed implementation with IEC 61499 Virtual Bus

6 Discussion and Conclusion

The industrial systems market within the framework of the Industry 4.0 concept
needs open solutions that can be implemented on distributed platforms. Cur-
rently, these are an open question for which a simple and effective answer needs
to be worked out. IEC 61499 offers some solutions primarily attractive due to
their ability for creating distributed control systems. However, this standard is
highly dependent on the 30 year old standard IEC 61131-3. The 61131-3 standard
is based on a device-centric paradigm and can only be successfully modified using
existing process-oriented programming techniques. This shift to the application-
centric paradigm can lead to a very steep learning curve. We propose to smooth
the learning curve by using the poST language – a process-oriented extension
of ST. Preliminary studies show that poST is compatible with the FB concept;
moreover, when poST and the IEC 61499 are used, a synergistic effect appears.
This synergy manifests in that specifying IEC 61499 function blocks in poST
provides an application-centric paradigm for control software development with
distributed architectures.

As a further direction of this research, we plan to formalize a new operational
semantics of the poST language to align it with the IEC 61499 virtual bus
features. An operational semantics would allow to adapt existing approaches in
formal verification of process-oriented programs to the distributed case.

Acknowledgments. We thank the JetBrains Foundation for the charitable support
of our research activity.

A
ut

ho
r

Pr
oo

f

10 V. Zyubin and A. Rozov

References

1. IEC 61131-3: Programmable Controllers Part 3: Programming Languages. Inter-
national Electrotechnical Commission Std., Rev. 2.0 (2003)

2. Crater, K.C.: When Technology Standards Become Counterproductive. Con-
trol Technology Corporation (1992). https://support.controltechnologycorp.com/
index.php?option=com content&view=article&id=188&Itemid=null

3. IEC 61499: Function Blocks for Industrial Process Measurement and Control
Systems, Parts 1–4. International Electrotechnical Commission Std., Rev. 1.0
(2004/2005)

4. Thramboulidis, K.: Different perspectives [face to face; “IEC 61499 function block
model: facts and fallacies”]. IEEE Ind. Electron. Mag. 3(4), 7–26 (2009). https://
doi.org/10.1109/MIE.2009.934788

5. Vyatkin, V.: The IEC 61499 standard and its semantics. IEEE Ind. Electron. Mag.
3(4), 40–48 (2009)

6. Zyubin, V.E.: Hyper-automaton: a model of control algorithms. In: Stukach, O.
(ed.) Proceedings of the IEEE International Siberian Conference on Control and
Communications, Tomsk, Russia, pp. 51–57. IEEE (2007). https://doi.org/10.
1109/SIBCON.2007.371297

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc. (1985)
8. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Q. 2,

219–246 (1989)
9. Harel, D.: Statecharts a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8, 231–274 (1987)
10. Milner, R.: Communication and Concurrency. Series in Computer Science, Prentice

Hall, Englewood Cliffs (1989)
11. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)

Proof, Language and Interaction: Essays in Honour of Robin Milner. Foundations
of Computing Series, pp. 425–454. MIT Press (2000)

12. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O automata: a
mathematical framework for modeling and analyzing real-time systems. In: Pro-
ceedings of the IEEE 24th International Real-Time Systems Symposium (RTSS
2003), Cancun, Mexico, pp. 166–177. IEEE Computer Society (2003)

13. Kof, L., Schätz, B.: Combining aspects of reactive systems. In: Broy, M., Zamulin,
A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 344–349. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-39866-0 34

14. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

15. Anureev, I., Garanina, N., Liakh, T., Rozov, A., Schulte, H., Zyubin, V.: Towards
safe cyber-physical systems: the reflex language and its transformational semantics.
In: International Siberian Conference on Control and Communications (SIBCON),
Tomsk, Russia, pp. 1–6 (2019). https://doi.org/10.1109/SIBCON.2019.8729633

16. Rozov, A.S., Zyubin, V.E.: Adaptation of the process-oriented approach to the
development of embedded microcontroller systems. Optoelectron. Instrum. Data
Process. 55(2), 198–204 (2019). https://doi.org/10.3103/S8756699019020122

17. Liakh, T.V., Rozov, A.S., Zyubin, V.E.: Reflex language: a practical notation for
cyber-physical systems. Syst. Inform. (12), 85–104 (2018)

A
ut

ho
r

Pr
oo

f

https://support.controltechnologycorp.com/index.php?option=com_content&view=article&id=188&Itemid=null
https://support.controltechnologycorp.com/index.php?option=com_content&view=article&id=188&Itemid=null
https://doi.org/10.1109/MIE.2009.934788
https://doi.org/10.1109/MIE.2009.934788
https://doi.org/10.1109/SIBCON.2007.371297
https://doi.org/10.1109/SIBCON.2007.371297
https://doi.org/10.1007/978-3-540-39866-0_34
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1109/SIBCON.2019.8729633
https://doi.org/10.3103/S8756699019020122

Using Process-Oriented Structured Text 11

18. Kovadlo, P.G., et al.: Automation system for the large solar vacuum telescope.
Optoelectron. Instrum. Data Process. 52(2), 187–195 (2016). https://doi.org/10.
3103/S8756699016020126

19. Liah, T.V., Zyubin, V.E.: The Reflex language usage to automate the large solar
vacuum telescope. In: 2016 17th International Conference of Young Specialists on
Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, Russia, pp. 137–
139 (2016). https://doi.org/10.1109/EDM.2016.7538711

20. Bashev, V., Anureev, I., Zyubin, V.: The post language: process-oriented exten-
sion for IEC 61131-3 structured text. In: 2020 International Russian Automation
Conference (RusAutoCon), Sochi, Russia, pp. 994–999 (2020). https://doi.org/10.
1109/RusAutoCon49822.2020.9208049

21. Petrov, I., Wagner, R.: Debugging applied PLC software in CoDeSys (part 3).
In: Industrial Automatic Control Systems and Controllers, vol. 4, pp. 34–36.
Nauchtekhlitizdat (2006)

22. Wiegand, J.: Eclipse: a platform for integrating development tools. IBM Syst. J.
43(2), 371–383 (2004). https://doi.org/10.1147/sj.432.0371

23. Marcos, M., Estevez, E., Perez, F., Der Wal, E.V.: XML exchange of control pro-
grams. IEEE Ind. Electron. Mag. 3(4), 32–35 (2009). https://doi.org/10.1109/
MIE.2009.934794

A
ut

ho
r

Pr
oo

f

https://doi.org/10.3103/S8756699016020126
https://doi.org/10.3103/S8756699016020126
https://doi.org/10.1109/EDM.2016.7538711
https://doi.org/10.1109/RusAutoCon49822.2020.9208049
https://doi.org/10.1109/RusAutoCon49822.2020.9208049
https://doi.org/10.1147/sj.432.0371
https://doi.org/10.1109/MIE.2009.934794
https://doi.org/10.1109/MIE.2009.934794

Author Queries

Chapter 17

Query
Refs.

Details Required Author’s
response

AQ1 This is to inform you that corresponding author has been
identified as per the information available in the Copy-
right form.

A
ut

ho
r

Pr
oo

f

