04;07;12 Пространственная структура нижней моды ионно-звуковой неустойчивости плазмы сильноточного ионного лазера

© В.И. Донин,¹ В.А. Иванов,¹ В.В. Пикалов,² Д.В. Яковин¹

¹ Институт автоматики и электрометрии СО РАН, 630090 Новосибирск, Россия ² Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск, Россия e-mail: donin@iae.nsk.su

(Поступило в Редакцию 12 апреля 2002 г.)

В плазме сильноточного непрерывного разряда аргонового ионного лазера экспериментально исследована пространственная структура нижней моды ионно-звуковой неустойчивости. Регистировались проекции колебаний интенсивности линий ArII спонтанного излучения плазмы при наблюдении с различных ракурсов в плоскостях сечений, перпендикулярных оси разряда. По полученным спектрам мощности интегральных проекций излучения восстановлена двумерная пространственная структура моды. В рамках существующих теоретических моделей проведена ее идентификация.

Введение

Ионные газовые лазеры в настоящее время являются наиболее мощными источниками непрерывного когерентного излучения в видимой и ближней УФ областях спектра. В качестве активной среды таких лазеров используется сильноточный разряд пониженного давления, создаваемый в цилиндрических трубках диаметром $5 \le d \le 30 \,\mathrm{mm}$ [1]. Ранее было экспериментально установлено, что при оптимальных для мощности генерации условиях в плазме ионных лазеров наряду с высокочастотными ионно-звуковыми колебаниями на частотах $\omega \lesssim \Omega_i$ (Ω_i — ионная плазменная частота) одновременно могут самопроизвольно возбуждаться низкочастотные ионно-звуковые колебания на частотах $\omega \lesssim 10^{-2} \Omega_i$ [1–5]. Пороговое значение тока раскачки колебаний зависит от d, давления наполнения газа и распределения числа атомов вдоль разряда. Повышение тока сверх порогового может приводить к разрушению стенок разрядной трубки, что ограничивает рост выходной мощности и срок службы лазера [1].

Низкочастотный спектр ионно-звуковой неустойчивости плазмы аргонового лазера представляет собой пики, раздельно лежащие в диапазоне $0.1 \le v \le 2 \,\mathrm{MHz}$ $(\nu = \omega/2\pi)$. В пороговом режиме наблюдается не более двух пиков. По мере увеличения превышения над порогом их число растет. Наблюдаемые низкочастотные пики являются нижними модами длинноволновых ионно-звуковых колебаний в ограниченной стенками плазме [6,7]. Экспериментально найденное дисперсионное соотношение нижней (самой низкочастотной) моды [8] хорошо согласуется с теоретическим рассмотрением ионно-звуковых колебаний в цилиндрических разрядах низкого давления [9,10]. Пространственная неоднородность распределения интенсивности колебаний двух нижних мод экспериментально исследовалась, по-видимому, только в [7]. На основании полученной в [7] качественной радиальной зависимости колебаний

нельзя было получить представление о пространственной структуре мод и определить номер каждой моды. В настоящей работе томографическим способом получена двумерная пространственная структура самой низкочастотной моды и проведена ее идентификация в рамках имеющихся теоретических моделей.

Схема эксперимента и результаты

Аргоновая плазма создавалась стационарным сильноточным разрядом в трубке длиной 1 m с d = 16 mm (рис. 1). Трубка состояла из охлаждаемых водой алюминиевых секций с оксидным покрытием и имела холодный дуговой катод с саморазогревающейся тугоплавкой втулкой [1]. Четыре секции трубки имели расположенные перпендикулярно оси разряда z отверстия, выполненные в виде щелей размером 4×16 mm, для вывода излу-

Рис. 1. Экспериментальная установка для исследования пространственной структуры колебаний плазмы: 1 — разрядная трубка (К — катод, А — анод, О — окна), 2 — оптическая система со световодом 3, 4 — фотоумножитель, 5 — усилитель, 6 — анализатор спектра, 7 — коррелятор, 8 — аналого-цифровой преобразователь, 9 — персональный компьютер.

Рис. 2. Томографическая схема регистрации излучения плазмы.

чения из разряда (через кварцевые окна). Каждая из этих секций имела по три окна, что обеспечивало углы направлений наблюдения ξ в плоскости сечения, перпендикулярной оси *z*, равные 0, 55 и 90°. Секции с окнами были размещены в прикатодной области трубки, где исследуемые колебания были наиболее интенсивными (зависимость приведена в [8]). При давлении напуска аргона 0.2–0.4 Тогг (давление в разряде значительно ниже, особенно в прикатодной области) пороговые значения тока разряда составляли 300–400 А. Измерения проводились в условиях, близких к порогу неустойчивости. Нижняя мода колебаний имела частоту $v_0 = 190$ kHz.

Для исследования пространственной структуры колебаний использовался метод эмиссионной томографии плазмы [11]. Интенсивность выходящего из плазмы излучения определялась в основном сине-зелеными линиями однократно возбужденных ионов аргона с концентрацией n_i^* . При небольших превышениях порогового тока концентрация ионов в основном состоянии $n_i(t) = n_i + \delta n_i(t)$, где n_i — постоянная составляющая, $\delta n_i(t)$ — малая ($\leq 3\%$ от n_i) осциллирующая со временем t составляющая. В условиях эксперимента n_i^* близка к насыщению по плотности электронов, т.е. $n_i^*(t) \sim n_i(t)$, по крайней мере для частот $\nu < \beta_i$, где β_i — скорость ионизации [1].

Томографическая задача заключалась в регистрации излучения плазмы с разных ракурсов наблюдения в плоскостях сечений, перпендикулярных оси z. На рис. 2 показана принципиальная схема регистрации, где x, y — координаты точек исследуемой плоскости. В каждый момент времени интенсивность излучения, вышедшего из плазмы в направлении луча наблюдения L, пропорциональна интегралу от плотности возбужденных ионов вдоль его траектории

$$\int_{L} n_i^*(x, y, t) \, dl,$$

где *dl* — приращение длины вдоль *L*.

В эксперименте интегральное излучение регистрировалось в виде одномерных проекций $f(\xi, p)$ в системе параллельных лучей, задаваемых направлением ξ и расстоянием p до оси z. В приближении оптически тонкой плазмы проекции описываются классическим интегральным преобразованием Радона R [11]

$$f(\xi, p, t) = R\{n_i^*(x, y, t)\}.$$
 (1)

По экспериментально измеренным в каждый произвольный момент времени проекциям для набора углов $\xi \in [0, \pi]$ и набора координат $p \in [-d/2, d/2]$ можно получить оценку решения интегрального уравнения (1) в виде

$$n_i(x, y, t) \sim R^{-1} \{ f(\xi, p, t) \},$$
 (2)

где R^{-1} — приближение к обратному преобразованию Радона.

Преобразование Фурье по времени применимо к обеим частям выражения (2)

$$\tilde{n}(x, y, \nu) \backsim R^{-1} \big\{ \tilde{f}(\xi, p, \nu) \big\}.$$
(3)

Здесь и далее тильдой обозначено фурье-преобразование по времени. Принципиальная возможность получения фурье-представления (3) решения обратной задачи (2) была обоснована численным моделированием. Частотная зависимость функции $\tilde{n}_i(x, y, v)$ в каждой точке исследуемой области представляет спектр колебаний ионов плазмы. При выборе фиксированной частоты какой-либо моды рассматриваемая функция представляет собой пространственное распределение этой моды.

Регистрация проекций и их фурье-спектров осуществлялась на экспериментальной установке, показанной на рис. 1. Вышедшее из окна разрядной трубки излучение преобразовывалось в электрический сигнал с помощью оптической системы, состоящей из фокусирующей линзы, сине-зеленого светофильтра, двух диафрагм, волоконного световода (рис. 3) и фотоумножителя. При измерениях использовались две идентичные системы. Каждая регистрировала излучение из объема плазмы в виде узкого цилиндра, перпендикулярного оси разряда. Размеры диафрагм и расстояние между элементами оптической системы выбирались в соответствии с расчетами работы [12]. Пространственное разрешение оптической системы составляло 0.25 mm. Каждая система была размещена на отдельной скамье, равномерное

Рис. 3. Оптическая схема регистрации излучения: *1* — сечение разряда, *2* — цилиндрический элемент объема, *3* — линза, *4* — светофильтр, *5* — диафрагмы, *6* — приемная площадка световода.

Журнал технической физики, 2003, том 73, вып. 2

-8 -6 -4 -2 0 2 4 6 8 0-8 -6 -4 -2 0 2 4 6 p, cm

Рис. 4. Зависимость постоянной (a) и осциллирующей (b) составляющих интегрального излучения от p.

перемещение которой по координате *p* перпендикулярно оси *z* обеспечивалось электродвигателем. Одна из систем позволяла производить измерения последовательно из двух окон одной секции.

A, a.u.

0

Поскольку применяемый многоканальный аналого-цифровой преобразователь (АЦП) имел сравнительно невысокое быстродействие ($> 30 \,\mu s$), в нашей установке использовался аналоговый анализатор спектра типа СК4-59, на вход которого через усилитель подавалось напряжение с фотоумножителя. Анализатором измерялась амплитуда гармонической составляющей входного сигнала с частотой v₀. Полоса пропускания анализатора на данной частоте составляла 10 kHz. С выхода анализатора считывалось напряжение, пропорциональное измеряемой амплитуде, представляющее спектр мощности сигнала $U \sim |f(\xi, p, v_0)|$. Для определения корреляционных характеристик колебаний (методика описана в [8]) усиленные сигналы с фотоумножителей подавались на входы коррелятора типа Х6-4. Для записи корреляционных функций и U(p) использовались АЦП и персональный компьютер. На входы АЦП также подавались интегрированные по времени сигналы с усилителей, каждый из которых отражал зависимость постоянной составляющей интегрального излучения плазмы от р в одном из ракурсов (рис. 4, a). По этим кривым можно было осуществлять контроль настройки оптических систем. На рис. 4, b приведены типичные спектры мощности проекций на частоте v₀, одновременно полученные в двух ракурсах. Проекции имеют привал в центре разряда между двумя равными максимумами. В зависимости от ракурса расстояние между максимумами могло меняться (вплоть до совпадения максимумов). При измерениях было обнаружено, что перемещение оптической системы вдоль оси z (в пределах ширины щели размером 4 mm) не влияло на изменение формы проекций. Это свидетельствует о том, что пространственная структура исследуемых колебаний практически однородна вдоль оси разряда, т.е. $|\mathbf{k}| \simeq k_z$, где \mathbf{k} —

волновой вектор колебаний, k_{z} — его продольный компонент.

Задача реконструкции пространственной структуры исследуемой моды колебаний состояла в нахождении двумерного распределения по наборам экспериментальных проекций методами вычислительной томографии по формуле (3). Для использования (3) необходимо в эксперименте регистрировать (или как-то вычислять) отдельно мнимую и действительную части спектра $f(\xi, p, v_0)$, однако используемый анализатор измерял лишь спектр мощности проекций. В общем случае вид распределения, восстановленного из модуля спектра проекционных данных, может не совпадать с пространственной структурой функции, от которой были получены проекции. Однако для ряда объектов (в том числе, как показало численное моделирование, и для нашего случая), описываемых стационарными гармоническими колебаниями, по этой методике можно без существенных искажений определить характерный вид их пространственной структуры.

Реконструкция томограмм проводилась с помощью метода максимума энтропии [13], эффективного в задачах с параллельной системой регистрации проекций при очень малом числе ракурсов. В вычислениях использовался алгоритм MENT, входящий в пакет программ вычислительной томографии плазмы и газа TOPAS-MICRO [11]. Восстановленные томограммы (рис. 5, a) содержат два симметричных относительно центра разряда главных максимума. Измерение взаимнокорреляционных функций колебаний из разных областей разряда показало наличие фазового сдвига между главными максимумами, равного π rad. На томограммах заметны артефакты в виде полигональных искажений, появляющихся вследствие малого числа ракурсов. Сравнение томограмм, полученных в соседних секциях, указывало на наличие небольшого поворота характерных структур изображения вокруг оси z. Это позволило получить качественное представление о трехмерной структуре исследуемой моды в виде двойной спирали

Рис. 5. Восстановленная томограмма (a) и структура (модуль распределения) моды (1, 1) [7] (b).

с периодом витка (по нашим оценкам) $\simeq 50-100$ сm. Причины наблюдаемого слабого вращения структуры моды по мере изменения *z* нами не изучались.

Обсуждение результатов и выводы

Как указывалось выше, пространственная неоднородность распределения интенсивности ионно-звуковых колебаний в сильноточном разряде ионного лазера была экспериментально замечена в [7] на основании качественного различия радиальных распределений двух нижних мод колебаний. По сравнению с экспериментальной схемой, применявшейся в указанной работе, наша схема позволяет исследовать пространственную структуру колебаний томографическим способом и имеет гораздо лучшее пространственное разрешение. В результате измерений спектров мощности интегральных проекций и их обработки методами вычислительной томографии была определена двумерная структура нижней моды. Корреляционные измерения выявили пространственную фазовую неоднородность этой моды.

Теоретическое рассмотрение структуры мод в рамках гидродинамической модели ионно-звуковых колебаний в разряде содержатся в работах [7,9,10]. Однако в отличие от работ [9,10] модель [7] объясняет наличие нижних граничных частот и демонстрирует хорошее согласование расчетной величины частоты нижней моды с измеренной в эксперименте. Согласно [7], моды колебаний в полярных координатах (r, φ) имеют структуру вида

$$\delta n_i(r,\varphi) \sim J_m\left(j_{mn}\frac{2r}{d}\right)\cos(m\varphi),$$

где через j_{mn} обозначен *n*-й нуль функции Бесселя *m*-го порядка J_m .

Следовательно, каждая мода характеризуется парой целых чисел (m, n). Вид реконструированного двумер-

ного распределения нижней моды, имеющего два характерных максимума (рис. 5, *a*), и наличие разницы фаз π гаd между ними хорошо согласуются только с теоретической структурой моды с m = 1, n = 1 (показанной на рис. 5, *b*). Это позволяет идентифицировать нижнюю моду как моду (1, 1), что не противоречит результатам работ [8,9,10]. Таким образом, в настоящей работе при помощи методов эмиссионной томографии, адаптированных для изучения пространственных характеристик колебаний плазмы, впервые получена двумерная пространственная структура нижней моды ионно-звуковой неустойчивости плазмы сильноточного аргонового лазера и проведена идентификация исследуемой моды.

Список литературы

- [1] Донин В.И. Мощные ионные газовые лазеры. Новосибирск: Наука, 1991. 208 с.
- [2] Донин В.И. // ЖЭТФ. 1972. Т. 62. Вып. 5. С. 1648–1660.
- [3] Wang C.P., Lin S.C. // J. Appl. Phys. 1972. Vol. 43. N 12. P. 5068–5073.
- [4] Гадецкий Н.П., Ткач Ю.В., Сидельникова А.В., Зейдлиц В.П. // Укр. физ. журн. 1974. Т. 19. № 6. С. 931–935.
- [5] Lüthi H.R., Seelig W. // J. Appl. Phys. 1977. Vol. 48. N 12.
 P. 4922–4927.
- [6] Алферов Г.Н., Донин В.И., Смирнов Г.И., Шапиро Д.А. // Квантовая электрон. 1981. Т. 8. № 1. С. 13–19.
- [7] Донин В.И., Шапиро Д.А., Яковин Д.В., Яценко А.С. // ЖТФ. 1988. Т. 58. Вып. 1. С. 80–87.
- [8] Донин В.И., Иванов В.А., Яковин Д.В. // ЖТФ. 2001. Т. 71. Вып. 4. С. 36–39.
- [9] Woods L.C. // J. Fluid. Mech. 1965. Vol. 23. Pt 2. P. 315–323.
- [10] Ewald H.N., Crawford F.W., Self S.A. // Phys. Fluids. 1969.
 Vol. 12. N 2. P. 303–315.
- [11] Пикалов В.В., Мельникова Т.С. Томография плазмы. Новосибирск: Наука, 1995. 229 с.
- [12] Webb C.E. // J. Appl. Phys. 1968. Vol. 39. N 12. P. 5441-5470.
- [13] Minerbo G.N., Sanderson J.G., van Hulsteyn D.B., Lee P. // Appl. Opt. 1980. Vol. 19. N 10. P. 1723–1728.