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Abstract—Reflex is a process-oriented language that provides
design of easy-to-maintain control software. The language has
been successfully used in several safety-critical cyber-physical
systems, e. g. control software for a silicon single crystal
growth furnace. Now, the main goal of the Reflex language
project is development a support for computer aided software
engineering targeted to safety-critical application. The current
issue of the project we discuss in this paper is creating static
verification methods for Reflex programs. As base of the most
static verification techniques is a formal language semantics,
this paper presents the Reflex language semantics in form of
the transformational one.

1. Introduction

The increasing complexity and use of embedded and
cyber physical systems in our lives requires a reassessment
of the design and development tools. Most challenging are
safety-critical systems, where incorrect behavior and/or lack
of robustness lead to unacceptable loss in funds or even hu-
man life. Such systems are widely spread in industry, espe-
cially, in chemistry and metallurgy plants. Since behavior of
cyber-physical system is determined by the control system,
and behaviour of control system is specified by software, the
study of control software is of the great interest. The correct
behavior under various environmental conditions must be
ensured. In case of a hardware failure, e. g. plant damage
or actuator fault, the control system must automatically
react to prevent dangerous consequences. This is commonly
referred to as fault tolerant behavior [1]. Because of the
domain specificity control systems are based on industrial
controllers (PLCs) and specialized languages are used for
control software design.

Industrial controllers are inherently open (i. e. commu-
nicate with an external environment), reactive (have event-
driven behaviour) and concurrent (have to process a mul-
tiple asynchronous events). These features lead to special
languages being used in development of control software,
e.g. the IEC 61131-3 languages [2] which are the most
popular in the PLC domain. However, as the complexity of

control software increases and quality is of higher priority,
the 35 years old technology based on the IEC 61131-3
approach is not able to address the present-day requirements
[3]. This motivates researchers to enrich the IEC 61131-
3 development model with object-oriented concepts [4], or
develop alternative approaches, e. g. [5], [6], [7], [8].

To address the restrictions and challenges in develop-
ment of present-day complex control software, the process-
oriented programming (POP) has been suggested in [9].
POP involves expressing control software as a set of inter-
acting processes, where processes are finite state automata
enhanced with inactive states as well as special operators
that implement concurrent control flows and time-interval
handling. Comparing to well-known FSA modifications, e.
g. Communicating Sequential Processes [10], Harels State-
charts [11], Input / Output Automata [12], Esterel [13],
Hybrid Automata [17], Calculus of Communicating Systems
[14], and their timed extensions [15], [16], the technique
both provides means to specify concurrency and saves the
linearity of the control flow at the processes level. Therefore
it provides a conceptual framework for process-oriented
languages that are suitable to design software for cyber-
physical systems.

The process-oriented approach has been implemented in
domain-specific programming languages such as SPARM
[18], Reflex [19] and IndustrialC [20]. These languages are
C-like and therefore they are easy to learn. Translators of
the languages produce C-code and therefore cross-platform
portability is achieved. With their native support for state
machines and floating point operations these languages al-
low cyber-physical systems to be easily expressed.

The SPARM language is a predecessor of the Reflex
language and now it is out of use. IndustrialC targets strict
utilization of microcontroller peripheral (registers, timers,
PWM, etc.) and extends Reflex with means for interrupt
handling. While Reflex is a pure process-oriented language
that assumes strict encapsulation of platform-dependent I/O
subroutines into a library. As well as it is done in the IEC
61131-3 languages. This encapsulation provides semantic
simplicity of the language that, together with the continu-
ing practical value, makes it very attractive for theoretical



studies.
Application domain for Reflex language includes various

kinds of control algorithms, PLC-based control systems,
hybrid and cyber-physical systems. A Reflex program is
specified as a set of communicating concurrent processes.
Specialized constructs have been introduced for controlling
of processes and time intervals handling. Reflex also pro-
vides constructs for linking its variables to physical I/O sig-
nals. Procedures for reading / writing data through registers
and their mapping to variables are generated automatically
by the translator.

Reflex has been successfully used in several safety-
critical cyber-physical systems, e. g. control software for a
silicon single crystal growth furnace [21]. Currently Reflex
project is focused on design and development tools for
safety-critical systems. Because of its system independence
Reflex easily integrates with LabVIEW [22]. This allows
to develop software combining event-driven behavior with
advanced graphic user interface, remote sensors and ac-
tuators, LabVIEW-supported devices, etc. Using flexibility
of LabVIEW, a set of plant simulators was designed for
the learning purposes [23]. The LabVIEW-based simulators
include 2D animation, tools for debugging, and language
support for learning of control software design. One of the
result obtained in this direction is LabVIEW-based dynamic
verification toolset for Reflex programs.

Dynamic verification treats the software as a black-
box, and checks its compliance with the requirements by
observing run-time behavior of the software under a set
of test-cases. While such a procedure can help detect the
presence of bugs in the software, it cannot guarantee their
absence [24].

Unlike dynamic verification, static methods are based on
source code analysis and are commonly recognized as the
only way to ensure required properties of the software. It is
therefore very important to adopt static verification methods
for Reflex programs.

Static verification methods require programs to have
formal semantics. There are three basic approaches to for-
mal semantics of programming languages: operational, ax-
iomatic and denotational. Operational semantics describes
the execution of programming language constructs in terms
of states and transitions from one state to other. Axiomatic
semantics gives meaning to language construct by logical
formulas. Denotational semantics interprets each language
construct as a denotation. These denotations are usually
described in a denotational metalanguage. If a denotational
semantics uses the source language as a denotational meta-
language, it is called a transformational semantics.

Developing formal (operational, axiomatic or denota-
tional) semantics of Reflex from scratch would be a very
complex and time-consuming task, since it would require to
formalize all constructs of the C language for which Reflex
is an extension.

Instead, we define the transfomational semantics of Re-
flex using C as a denotational metalanguage and, thus,
reduce the task of development of Reflex semantics to the
task of development of C semantics for which there are

several solutions based on operational [25], [26], axiomatic
[27], [28] and denotational [33], [34], [35] approaches.

2. Introduction to Reflex

Reflex syntax is demonstrated here using a simple ex-
ample of a program controlling a hand dryer like those
often found in public restrooms (Listing 1). A formal Reflex
syntax definition in EBNF has been specified in [19].

Here, the program uses input from an IR sensor, indicat-
ing presence of hands under the dryer and controls the fan
and heater with a joint output signal. The basic requirement
is that the dryer is on while hands are present and turns
off automatically otherwise. Trivial at first sight, the task
is complicated with discontinuity of the input signal caused
by the user rubbing and turning their hands under the dryer.
To avoid erratic toggling of the dryer heater and fan, the
program should not react to brief interruptions in the signal
and the actuators should only be turned off once the sensor
reading is a steady ”off”. The control algorithm can only
meet this requirement by measuring the duration of the off
state of the sensor. In this case, a continuous ”off” signal
longer than a certain given time (for example, 1 s) would
be regarded as a ”hands removed” event.

PROGR HandDryerController {
TACT 100;
CONST ON 1;
CONST OFF 0;

/*=============================*/
/* I/O ports specification */
/* direction, name, address, */
/* offset, size of the port */
/*=============================*/
INPUT SENSOR_PORT 0 0 8;
OUTPUT ACTUATOR_PORT 1 0 8;

/*=============================*/
/* processes definition */
/*=============================*/
PROC Init {

/*===== VARIABLES =============*/
BOOL I_HANDS =
{SENSOR_PORT[1]} FOR ALL;

BOOL O_DRYER =
{ACTUATOR_PORT[1]} FOR ALL;

/*===== STATES ================*/
STATE Waiting {
IF (I_HANDS == ON) {
O_DRYER = ON;
SET NEXT;

} ELSE O_DRYER = OFF;
}
STATE Drying {
IF (I_HANDS == ON)
RESET TIMEOUT;
TIMEOUT 10

SET STATE Waiting;
}

} /* \PROC */
} /* \PROGRAM */

Listing 1. Hand dryer example in Reflex

In Reflex, a program is presented as a set of concurrently
running communicating processes, each defined in textual
form starting with a PROC keyword:



PROC <process name> {<process body>}

The first process defined in the text is initially active when
the program is started.

Program execution is split into clocks with a fixed period
specified with the TACT directive at the top of the code.

The body of a process consists variable declarations and
list of state function definitions in the following form:
STATE <state name> {<state body>}

The state that is defined first in the process body is one
into which that process is transitioned by START PROC
statements. Two extra states STOP and ERROR are defined
implicitly for each process.

The body of a state is defined as a sequential block
of code, consisting of the assignment statements, if state-
ments, switch statements, process control statements and
one optional timeout statement that define events and their
corresponding reactions. To prevent the code from blocking
the program execution, Reflex does not provide any loop
statements.

The syntax for expression and selection statements is
almost identical to that in C the selection statements is very
similar to that of equivalent C statements and is discussed
in detail in [19]. For introduction purposes here we focus
on those constructs that are specific to Reflex.

Process control and communication in Reflex is man-
aged using state transitions, control statements and activity
predicates that can be used in expressions. State can be only
be used by the process on itself and set the process state for
the next activation cycle:
SET STATE <state name>;

A reserved keyword NEXT can be used here in lieu of
explicit state name to denote a transition to the state that is
defined next to the current along the program text.

The START/STOP/ERROR statements allow processes to
start/stop other processes and to stop themselves - either
normally or in error state. These statements are responsible
for divergence and convergence of control flow:
START PROC <process name>;
STOP PROC <process name>;
STOP;
ERROR;

Processes are also able to check whether other processes
are in their active or passive states using selection statements
in conjunction with ACTIVE/PASSIVE predicates, e.g.:
IF (PROC <process name> IN STATE ACTIVE) {

... }

To provide means for tracking time, timeout statements
have been introduced in Reflex:
TIMEOUT <clocks num> <statement>

This statement can only be used once in a state function
and should then be the last statement in the state body. It
allows to specify a reaction to the event of the process
spending more than the specified amount of time in its
current state.

The process body can contain variable definitions with
port bindings and scope directives:

<type> <variable name> = <port binding> <
scope directive>;

Supported types are BOOL for Boolean values as well as
INT, SHORT, LONG, FLOAT and DOUBLE that behave the same
way as in C. The FOR ALL scope directive is to indicate that
this variable can be used by any processes in the program.
Port binding makes the variable being read into from an
input port or written into the port if that port is defined as
output. Ports used in the program are defined before the
process definitions in the following format:

<direction> <port name> <base address> <
offset> <size in bits>;

One important feature of variables bound to ports is that
all read and write operations for these variables are double-
buffered. The values of I/O ports are read once per program
cycle and each value is stored in two instances – one for
read and one for write operations. New values for the output
ports are set and sent to external devices at the end of the
cycle. This way all processes read the same port values even
if they are modified inside that cycle of execution.

3. Reflex Semantics

Transformational semantics of Reflex has the following
restrictions:

• Transformational semantics is defined only for well-
formed programs.

• Information about ports and matching variables with
ports is not taken into account as it relates to com-
munication with physical devices.

• Variable access levels are not taken into account,
since they determine only the correct access to vari-
ables, which is provided by well-formed programs.

• We consider that processes are executed sequentially
in each tact.

Let CR and CC be sets of constructs of programs in
Reflex and C, respectively. Programs in these languages are
also included in these sets. Let C = CR ∪ CC . Transfor-
mational semantics of Reflex is given by the binary relation
;∈ C × C such that ¬(c1 ; c2) for c1, c2 ∈ CC .

Let pR be a Reflex program that is transformed into
C program pC , i. e. pR ; pC . Let P = {p1, . . . , pn} and
S = {s1, . . . , sm} be sets of names (identifiers) of processes
and process states of pR, respectively. Let e and ss be an
expression and a statement sequence in Reflex, respectively.

The transformational semantics of Reflex is defined by
the following transformation rules for its constructs.

Programs. Let decT be a tact declaration in pR. Let
decv and decc be lists of all variable and constant declara-
tions in pR, respectively. Let mi be the number of states of
pi, and si1, . . . , s

i
mi
∈ S be states of pi for 1 ≤ i ≤ n.

To preserve information about input ports (more exactly
about changing the values of variables of pR through these



ports) the set of variables of pR is divided into three pair-
disjoint subsets: externally initialized variables (that get the
value once directly after initialization of processes of pR),
externally changed variables (their values can be externally
changed before each tact) and externally unchanged vari-
ables (their values cannot be externally changed).

Let {vi1, . . . , viki
} and {ve1, . . . , veke

} be sets of externally
initialized and externally changed variables of the types
ti1, . . . , t

i
ki

and te1, . . . , t
e
ke

in pR, respectively. The relation
; implicitly depends on these sets. The rule for pR has the
form:

pR ;

decT
decc
enum states {sstop, serror,
s11, . . ., s1m1

, s21, . . ., s2m2
, . . ., sn1 , . . ., snmn

};
states cs1, . . ., csn;
long clock1, . . ., clockn;
decv
init();
for (;;) {
ve1 = inputte1(); . . . veki

= inputte
ki

();
exec1(); . . . execn();
clock1++; . . . clockn++;}.

The enumeration type states defines stop state, error
state and states of processes in pR, respectively. The val-
ues of variables cs1, . . . , csn are current states of pro-
cesses p1, . . . , pn, respectively. The values of variables
clock1, . . . , clockn (called clock variables) are current time
(measured in tacts) of execution of processes p1, . . . , pn,
respectively, in their last current states.

For port declarations are not included in the right part of
the rule, they are eliminated from pR. The function inputt
(called an input function) with the prototype

t inputt(void);
returns an arbitrary value of the Reflex type t. Its concrete
implementation is not important for the purposes of de-
ductive verification. The family of such functions (with the
index t) models external changes of the values of variables
of pR.

The function init initializes the processes of pR before
their first launch:

void init() {
cs1 = s11; cs2 = sstop; . . . csn = sstop;
clock1 = 0; . . . clockn = 0;
vi1 = inputti1(); . . . viki

= inputti
ki

();}.
Let body(sij) denote the body of definition of state

sij of process pi from which all variable declarations are
eliminated. The function execi defines execution of pi:

void execi() {
switch (csi) {

case sii1: body(si1) break;
. . .
case siiki

: body(sik(i)) break;}}.

The substitution rule. Since Reflex is an extension of
C, constructs in these languages in Reflex program can be

embedded into each other. Transformational semantics of
such embedding is given by the substitution rule.

Let c, c′, c1, c2 ∈ C, and c[c′] denote the place of the
occurrence of c′ into c. The substitution rule has the form:

If c1 ; c2, then c[c1] ; c[c2].
Types. Type bool is defined by the rule:
bool ; Bool.

The rest Reflex types are C types.
The tact declaration. Let n be a number. The tact

declaration is defined by the rule:
tact n; ; #define tact n.

Constant declarations. Let id be a constant name.
Constant declarations are defined by the rules:

const id n; ; #define id n
const id e; ; #define id (e)
enum bod ; enum t bod;.

Here t is a new enumeration type with the body bod.
Variable declarations. Let ε denote an empty string.

Variable declaration are defined by the rules:
t id . . .; ; t id;
from proc pj id; ; ε.

Thus, information about matching variables with ports and
variable access levels is deleted, and Reflex variable decla-
ration is transformed into a C variable declaration.

The below statements are supposed to be found in pi.
State operations. Transformational semantics of state

operations is defined by the rules:
(is active) ; (pi is active);
(pj is active) ; ((csj != sstop) && (csj != serror));
(is inactive) ; (pi is inactive);
(pj is inactive) ; ((csj == sstop) || (csj == serror));
(in state stop) ; (pi in state stop);
(pj in state stop) ; (csj == sstop);
(in state error) ; (pi in state error);
(pj in state error) ; (csj == serror).

Process control statements. Process control statements
include stop statements, error statements, start statements,
set statements, next statements, and restart statements.

The stop statement is defined by the rules:
stop; ; stop proc pi;
stop proc pj ; ; {clockj = 0; csj = sstop;}.

The error statement is defined by the rules:
error; ; error proc pi;
error proc pj ; ; {clockj = 0; csj = serror;}.

The start statement is defined by the rule:
start proc pj ; ; {clockj = 0; csj = sj1;}.

The set statement is defined by the rule:
set state sij ; ; {clocki = 0; csi = sij ;}.

The next statement is defined by the rule:
If csi = sij , then next; ; {clocki = 0; csi = sij+1;}.

This statement can not occur in the body of the last state
declaration of pi since transformational semantics is defined
only for well-formed programs.

The restart statement is defined by the rule:
restart; ; {clocki = 0; csi = si1;}.

Timeout control statements. Process control statements
include the reset statement and the timeout statement.

The reset statement is defined by the rule:



reset timeout; ; clocki = 0;.
The timeout statement is defined by the rule:

timeout e ss ; if (clocki >= e) ss.
C code insertions. C code can be inserted into Reflex

program as the lines starting with two symbols ”#” and ”C”.
Transformational semantics of such insertions is defined by
the rule:

#C cC ; cC .

4. The transformation example

The result of transformation of the program controlling
a hand dryer considered in section 2 has the form:

#define TACT 100
#define ON 1
#define OFF 0

enum states {stop_state, error_state,
Init_Waiting, Init_Drying};

states Init_state;
long Init_clock;

_Bool I_HANDS;
_Bool O_DRYER;

void init() {
Init_state = Init_Waiting;
Init_clock = 0;}

void Init_exec() {
switch (Init_state) {
case Init_Waiting:
if(I_HANDS == ON)
{O_DRYER = ON;
Init_clock = 0;
Init_state = Init_Drying;}

else O_DRYER = OFF;
case Init_Drying:
if(I_HANDS == ON) {
Init_clock = 0;
Init_ state = Init_ Drying;}

if(Init_clock >= 10) {
Init_clock = 0;
Init_ state = Init_Waiting;}}}

void main(void){
init();
for(;;) {I_HANDS = input_bool();
Init_exec(); Init_clock++;}}

Listing 2. Hand dryer case study generated C code

The stop and error states are denoted by stop_state
and error_state. The process states are denoted by
concatenations of process names, the symbol _ and state
names, for example Init_Waiting. The current state
variables are denoted by concatenations of process names
and the string _state, for example Init_state. The
clock variables are denoted by concatenations of process
names and the string _clock, for example Init_clock.
The input functions are denoted by concatenations of the
string input_ and the corresponding types, for example
input_bool.

5. Discussion and Conclusion

The proposed transformational semantics of Reflex has
several remarkable properties.

First, it is compact and intuitive.

Second, if a fragment of C has a formal (operational,
axiomatic or denotational) semantics, this semantics is rela-
tively easily transferred to Reflex extension of the fragment.
Thus, we get formal (operational, axiomatic or denotational)
semantics of the corresponding Reflex fragments as a bonus.

Third, the transformational semantics are invariant with
respect to the safety-oriented fragments (sublanguages) of
C such as C0 [29], Clight [30], C-light [31] and MISRA C
[32]. This means that if all C constructs in a source Reflex
program belong to a fragment of the above, then the target
program in C (the result of transformations of the source
program) also belongs to this fragment. Thus, the formal
methods (for example, verification methods) developed for
these sublanguages can be extended to the corresponding
subclasses of Reflex programs.

Fourth, the proposed concepts of externally initialized,
externally changed and externally unchanged variables al-
lows to model interaction with input ports at an abstract
level.

A notable feature of this approach is its seamlessness.
Most static verification methods require the system to be
expressed in some specialized modelling language with
that expression only being used for verification purposes.
Hence, designers have to create two separate specifications
for their system – one for verification, and another one for
generating executable code. The transformation between the
two representations is performed manually and there is no
guarantee that the code verified is the same code as that
which is consequently compiled and executed.

In the proposed approach, a single notation – Refex –
is used for both. Reflex is naturally translated into a rather
limited subset of C which is also a subset of multiple C-
like languages with well-defined semantics. Therefore the
existing Reflex translator can easily be used, with minor
modifications, to generate code that is fit for verification.

This grants two important benefits. Firstly, this ensures
that the semantics of the verified algorithm are the same as
that of the final executable program. Secondly, any modifi-
cations to the source code are automatically applied to both
the model code (used for verification) and that of the target
software. This way, the workload during code change is
significantly reduced along with probability of human error.
This is especially important for iterative development where
source code is constantly modified.

In the future we plan to use this approach together
with the ontological approach [36] to formal verification of
concurrent systems, translating Reflex programs and their
specifications into process ontology and requirements on-
tology, respectively.

This work has been supported by the Russian Foundation
for Basic Research (grant 17-07-01600) and the Federal
Agency for Scientific Organizations (project AAAA-A17-
117060610006-6).
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