Широкополосная импульсная терагерцовая спектроскопия - ТГц спектрометры на основе фемтосекундных волоконных лазеров
- Генерация ТГц излучения в полупроводниках А3В5 - ТГц свойства кристаллов семейства боратов и их применения - ТГц свойства кристаллов титанил-фосфата калия и их применения - Измерение отношения концентраций орто- и параизомеров воды методом ТГц спектроскопии - Система нестационарной ТГц спектроскопии на основе титан-сапфирового лазера
Терагерцовые спектрометры на основе фемтосекундных волоконных лазеров Разработаны методы и созданы системы широкополосной терагерцовой (ТГц) спектроскопии на основе фемтосекундных волоконных лазеров [1,2] (рис. 1, 2). Генерация ТГц излучения осуществляется в многоэлементной фотопроводящей антенне «Batop». Для регистрации терагерцовых импульсов применяется поляризационно-оптический метод, основанный на линейном электрооптическом эффекте в кристаллах теллурида цинка ZnTe с ориентацией <110> и толщиной 2 мм [3,4]. Регистрация изменения напряженности терагерцового излучения во времени, прошедшего через образец, осуществляется стробоскопическим методом с использованием оптической линии задержки пробного лазерного импульса. ТГц спектрометры обеспечивают исследование образцов в диапазоне температур от -196 °C до 250 °C в различных экспериментальных конфигурациях: спектроскопия нарушенного полного внутреннего отражения, спектроскопия тонких пленок на подложках. Разработано и создано программное обеспечение управления широкополосными импульсными терагерцовыми спектрометрами, а также цифровой коррекции и обработки ТГц сигналов. Программное обеспечение позволяет корректировать систематические погрешности ТГц измерений, связанных с дрейфом мощности лазера накачки и нестабильностью оптической линии задержки [5], а также определять физические характеристики исследуемых образцов, такие как комплексный показатель преломления, коэффициент поглощения, комплексная диэлектрическая проницаемость, проводимость и т. д.
Характеристики спектрометра:
Спектрометры предназначены для: - исследования полупроводниковых материалов и структур, в т.ч. систем пониженной размерности, без нарушения их функционирования; - изучения внутренней структуры и идентификации сложных биологических молекул (аминокислот, полипептидов, белков, ДНК и РНК); - неинвазивной диагностики, в т.ч. в медицине; - обнаружения взрывчатых и наркотических веществ. Публикации:
Генерация терагерцового излучения в полупроводниках А3В5 Предложен новый метод генерации терагерцового излучения при воздействии фемтосекундных лазерных импульсов на поверхность узкозонного полупроводника [1,2]. Суть метода заключается в том, что с помощью микролинзового растра и затенения части поверхности полупроводника металлическими полосами создается пространственная модуляция интенсивности возбуждающего излучения. Рождающиеся в полупроводнике фотоносители разного знака имеют различную скорость диффузии. Вследствие этого на резкой границе металлического покрытия возникает градиент концентрации фотоносителей вдоль поверхности полупроводника (поперечный фотоэффект Дембера, рис. 3). Его релаксация за времена ~1 пс приводит к излучению электромагнитных импульсов терагерцового диапазона. Создан экспериментальный прототип предложенного терагерцового генератора на полупроводнике p-InSb и получен патент на изобретение [2]. Рис. 3. Схема генерации терагерцового излучения на краю непрозрачной маски. 1 – полупроводниковая пластина; 2 – непрозрачная маска; 3 – импульс электрического тока; 4 – диаграмма направленности детектируемой части терагерцового излучения; 5 – терагерцовое излучение, отражающееся от маски, 6 – возбуждающее лазерное излучение Экспериментально показано преимущество генерации терагерцового излучения на поверхности полупроводниковых кристаллов по сравнению с методом оптического выпрямления в кристалле ZnTe при их облучении лазерными импульсами на длине волны 775 нм [3]. Проведено сравнение эффективности генерации терагерцового излучения в полупроводниках GaAs, InAs и InSb (рис. 4а). Установлено, что при данных параметрах лазерного излучения наиболее эффективным генератором является InAs, для которого оценен вклад различных механизмов в генерацию терагерцового излучения: фотоэффекта Дембера и оптического выпрямления. Выполнены экспериментальные исследования генерационных свойств полупроводниковых материалов InAs, InSb с различными типами и концентрациями носителей при накачке фемтосекундными лазерными импульсами на длине волны 1550 нм (рис. 4б). Установлено, что наибольшей эффективностью генерации импульсного терагерцового излучения обладает InSb p-типа
Рис. 4. Сравнение спектров генерации в полупроводниках с разным типом проводимости при накачке излучением фемтосекундных волоконных лазеров на длине волны 775 нм и 1550 нм. Разработан метод повышения эффективности генерации ТГц излучения на поверхности полупроводников в постоянном магнитном поле (рис. 5). Исследовано влияние магнитного поля на эффективность генерации терагерцового излучения на поверхности полупроводников. Применение магнитного поля ~1 Тл приводит к увеличению мощности излучения в ~180 раз. (рис. 6)
Публикации:
ТГц свойства кристаллов семейства боратов и их применения Экспериментально определены оптические свойства (показатель преломления и коэффициент поглощения) нелинейных кристаллов семейства боратов [1]: альфа- и бета-бората бария (α- и β-BaB2O4, α- и β-BBO), трибората (LiB3O5, LBO) и тетрабората лития (Li2B4O7, LB4). В кристаллах LBO обнаружено значительное падение коэффициента поглощения (до уровня <5 см‑1) при охлаждении []. Построены уравнения Зельмеера для показателей преломления для оптических осей x, y и z при комнатной температуре и при температуре жидкого азота [3,4]. Рассчитаны кривые фазового синхронизма для генерации разностных частот в терагерцовый диапазон (рис. 8) при комнатной температуре в кристаллах LBO [4]. Однако эффективность данного преобразования низка из-за высокого коэффициента поглощения. Несмотря на падение поглощения в охлажденных кристаллах, эффективная генерация разностных частот в них также невозможна из-за невыполнения условий фазового согласования при низких температурах.
Измеренные показатели преломления β-BBO для обыкновенной и необыкновенной волн при комнатной температуре и температуре жидкого азота (рис. 9) аппроксимированы уравнениями Зельмеера [5]. На основе полученных результатов показана возможность генерации разностных частот лазерного излучения ближнего ИК-диапазона с преобразованием в длинноволновое (>650 мкм) терагерцовое излучение (рис. 10) [5], генерации второй гармоники в терагерцовом диапазоне, оптического выпрямления фемтосекундных импульсов в терагерцовый диапазон.
Публикации:
ТГц свойства кристаллов титанил-фосфата калия и их применения Впервые экспериментально исследованы оптические свойства нелинейно-оптических кристаллов титанил-фосфата калия (КТР) в диапазоне 0,2-2,6 ТГц методом широкополосной терагерцовой (ТГц) спектроскопии [14-17]. Исследования проведены вдоль основных кристаллографических осей на образцах различной проводимости (σ1<10−12 Ом-1см-1, σ2≈10−11 Ом−1•см−1 и σ3=2•10−6 Ом−1•см−1). Обнаружены линии поглощения, обусловленные внешними колебаниями ионов калия относительно кристаллического каркаса, образованного TiO6 и PO4. Установлено, что особенности линий поглощения в кристаллах с различной проводимостью связаны со степенью неупорядоченности калиевой подрешетки, т.е. с наличием дополнительных позиций и степенью их заполнения ионами калия. Показано, что для генерации широкополосного излучения в диапазоне 0,2-1 ТГц кристаллы КТР могут быть более эффективны по сравнению с традиционно применяемыми для этих целей кристаллами ниобата лития.
Рис. 11. Спектральная зависимость коэффициентов поглощения (а) и показателей преломления (б) высокоомного (σ2) кристалла КТР вдоль кристаллографических осей Публикации:
Измерение отношения концентраций орто- и параизомеров воды методом ТГц спектроскопии Предложен метод измерения отношения концентраций ядерных спиновых изомеров молекул воды (орто- и пара-H2O) средствами широкополосной терагерцовой спектроскопии [1]. Метод позволяет одновременно детектировать оба спиновых изомера в одинаковых физических условиях. С помощью созданного терагерцового спектрометра [2] измерен спектр оптической плотности паров воды в атмосфере. Теоретические спектры орто- и параизомеров рассчитаны по данным базы HITRAN с учетом инструментальной функции спектрометра. Сопоставление теоретических спектров с экспериментальными позволило определить отношение концентраций орто- и параизомеров молекул воды. По измерениям в спектральном диапазоне 0,15–1,05 ТГц их отношение составило 3,03±0,03. Полученное значение совпадает в пределах ошибки измерений с теоретическим значением, равным 3 в равновесных условиях, что доказывает работоспособность предложенного метода. Рис. 12. Сравнение экспериментального и теоретического спектров Публикации:
Система нестационарной терагерцовой спектроскопии на основе титан-сапфирового лазера Разработана и создана система нестационарной ТГц спектроскопии на основе титан-сапфирового лазера с многопроходным усилителем. К двум каналам системы стационарной ТГц спектроскопии, терагерцовому зондирующему и лазерному считывающему, добавлен третий – импульсный для предварительного возбуждения исследуемых образцов (рис. 13 и 14). Реализовано два режима сканирования. Первый расширяет стационарную спектроскопию, т.е. в разные моменты после возбуждающего импульса сканируется зондирующий терагерцовый импульс. Во втором режиме фиксируется оптическая задержка между возбуждающим и считывающим импульсами и меняется их общая задержка относительно зондирующего ТГц импульса. Разработаны и созданы программные модули восстановления параметров исследуемых образцов, которые позволяют изучать их терагерцовый отклик в различные моменты после возбуждения. Для расчетов используется квазистационарное приближение, при котором предполагается, что свойства исследуемых материалов меняются медленнее, чем время взаимодействия с зондирующим ТГц импульсом. На рис. 13 и 14 приняты следующие обозначения: канал предварительного возбуждения образца – голубой; канал генерации ТГц излучения – красный; канал регистрации ТГц излучения – оранжевый; зондирующее терагерцовое излучение – зеленый. Рис. 13. Блок-схема системы терагерцовой спектроскопии с предварительным возбуждением образца. Условные обозначения: Мi – селективное диэлектрическое зеркало на соответствующую длину волны; λ/2 + БПi – делитель пучка на два канала с регулировкой по мощности; Ф – фильтр из высокоомного кремния, пропускающий ТГц излучение и отрезающий излучение накачки на длине волны 800 нм; СФ – фильтр, пропускающий излучение на длине волны 400 нм и отрезающий излучение на 800 нм; СД – светоделитель; Г – генератор ТГц излучения; Д – детектор ТГц излучения; ПВ – призма Волластона Рис. 14. Фото оптической части стенда системы терагерцовой спектроскопии с предварительным возбуждением образца Экспериментально определены основные функциональные возможности системы нестационарной ТГц спектроскопии, зависящие от параметров излучения титан-сапфирового лазера с многопроходным усилителем: центральной длины волны 807 нм, ширины спектра ~52 нм, длительности импульса – 37,5 фс и энергии в импульсе – 1,8 мДж. Показано, что при этих параметрах терагерцовый диапазон созданной системы нестационарной спектроскопии ограничен 26 ТГц, временное разрешение каналов предварительного возбуждения и регистрации – длительностью лазерного импульса, а динамический диапазон ограничен отношением сигнал/шум интенсивности лазерного излучения и не превышает 60 дБ.
|